summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--main.tex40
1 files changed, 14 insertions, 26 deletions
diff --git a/main.tex b/main.tex
index b4c1861..0ce3598 100644
--- a/main.tex
+++ b/main.tex
@@ -503,7 +503,7 @@ For all $\lambda\in[0,1]^{n},$
$ V(S\cup\{i\}) - V(S) = \frac{1}{2}\log\left(1 + \T{x_i} A(S)^{-1}x_i\right)$.
Using this,
\begin{displaymath}
- \partial_i F_\mathcal{N}(\lambda) =
+ \partial_i F_\mathcal{N}(\lambda) = \frac{1}{2}
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
\log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)
@@ -512,7 +512,7 @@ Using this,
calculus and gives:
\begin{displaymath}
\partial_i L_\mathcal{N}(\lambda)
- = \T{x_i}\tilde{A}(\lambda)^{-1}x_i
+ =\frac{1}{2} \T{x_i}\tilde{A}(\lambda)^{-1}x_i
\end{displaymath}
where $\tilde{A}(\lambda) = I_d+\sum_{i\in \mathcal{N}}\lambda_ix_i\T{x_i}$. Using the following inequalities (where $A\geq B$ implies $A-B$ is positive semi-definite):
\begin{gather*}
@@ -526,18 +526,16 @@ Using this,
we get:
\begin{align*}
\partial_i F_\mathcal{N}(\lambda)
- & = \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
- P_\mathcal{N}^\lambda(S)
- \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
- & \geq \frac{1}{2}
+ % & = \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}^\lambda(S) \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
+ & \geq \frac{1}{4}
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
\log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
- &\hspace{-3.5em}+\frac{1}{2}
+ &\hspace{-3.5em}+\frac{1}{4}
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})
\log\Big(1 + \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\
- &\geq \frac{1}{2}
+ &\geq \frac{1}{4}
\sum_{S\subseteq\mathcal{N}}
P_\mathcal{N}^\lambda(S)
\log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)
@@ -546,40 +544,34 @@ Using this,
\begin{displaymath}
\T{x_i}A(S)^{-1}x_i \leq \norm{x_i}_2^2 = 1
\end{displaymath}
-
Moreover:
\begin{displaymath}
\forall x\leq 1,\; \log(1+x)\geq x
\end{displaymath}
-
Hence:
\begin{displaymath}
\partial_i F_\mathcal{N}(\lambda) \geq
- \frac{1}{2}
+ \frac{1}{4}
\T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i
\end{displaymath}
-
Finally, using that the inverse is a matrix convex function over symmetric
positive definite matrices:
\begin{align*}
\partial_i F_\mathcal{N}(\lambda) &\geq
- \frac{1}{2}
- \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i\\
- & \geq \frac{1}{2}
+ \frac{1}{4}
+ \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i
+ \geq \frac{1}{2}
\partial_i L_\mathcal{N}(\lambda)\qed
\end{align*}
\end{proof}
-
-\begin{proof}
- Let us consider a feasible point $\lambda^*\in[0,1]^{n}$ such that $L_\mathcal{N}(\lambda^*)
- = OPT(L_\mathcal{N}, B)$. By applying lemma~\ref{lemma:relaxation-ratio}
- and lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
+ To prove Lemma~\ref{lemma:relaxation}, let us consider a feasible point $\lambda^*\in[0,1]^{n}$ such that $L_\mathcal{N}(\lambda^*)
+ = OPT(L_\mathcal{N}, B)$. By applying Lemma~\ref{lemma:relaxation-ratio}
+ and Lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
one fractional component such that:
\begin{equation}\label{eq:e1}
L_\mathcal{N}(\lambda^*) \leq 2
F_\mathcal{N}(\bar{\lambda})
\end{equation}
-
Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$
denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$.
Using the fact that $F_\mathcal{N}$ is linear with respect to the $i$-th
@@ -587,20 +579,16 @@ Using this,
\begin{displaymath}
F_\mathcal{N}(\bar{\lambda}) = V(S) +\lambda_i V(S\cup\{i\})
\end{displaymath}
-
Using the submodularity of $V$:
\begin{displaymath}
F_\mathcal{N}(\bar{\lambda}) \leq 2 V(S) + V(i)
\end{displaymath}
-
Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and
$V(S)\leq OPT(V,\mathcal{N}, B)$. Hence:
\begin{equation}\label{eq:e2}
F_\mathcal{N}(\bar{\lambda}) \leq 2 OPT(V,\mathcal{N}, B)
+ \max_{i\in\mathcal{N}} V(i)
\end{equation}
-
- Putting \eqref{eq:e1} and \eqref{eq:e2} together gives the results.
-\end{proof}
+ Together, \eqref{eq:e1} and \eqref{eq:e2} imply the lemma. \hspace*{\stretch{1}}\qed