summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--notes.tex79
1 files changed, 79 insertions, 0 deletions
diff --git a/notes.tex b/notes.tex
index c84f989..8dc2c7b 100644
--- a/notes.tex
+++ b/notes.tex
@@ -3,6 +3,7 @@
\usepackage{amsmath,amsthm,amsfonts}
\usepackage{comment}
\newtheorem{lemma}{Lemma}
+\newtheorem{prop}{Proposition}
\newcommand{\var}{\mathop{\mathrm{Var}}}
\newcommand{\condexp}[2]{\mathop{\mathbb{E}}\left[#1|#2\right]}
\newcommand{\expt}[1]{\mathop{\mathbb{E}}\left[#1\right]}
@@ -13,6 +14,84 @@
\newcommand{\trace}{\mathop{\mathrm{tr}}}
\begin{document}
+
+\section{pomme}
+
+In this section, we will consider that we are given a \emph{universe}
+set $U$ such that all the sets we consider are subsets or $U$ and all
+functions defined on sets are defined on the power set of $U$,
+$\mathfrak{P}(U)$.
+
+A function $f$ defined on $\mathfrak{P}(U)$ will be said
+\emph{increasing} if it is increasing with regards to inclusion, that
+is:
+\begin{displaymath}
+ \forall\,S\subseteq T,\quad f(S)\leq f(T)
+\end{displaymath}
+A \emph{decreasing} function on $\mathfrak{P}(U)$ is defined similarly.
+
+\begin{prop}
+ Let $R:\mathbf{R}\rightarrow \mathbf{R}$ be a decreasing concave
+ function and $f:\mathfrak{P}(U)\rightarrow\mathbf{R}$ be a
+ decreasing submodular function, then the composed function $R\circ
+ f$ is increasing and supermodular.
+\end{prop}
+
+\begin{proof}
+ The increasingness of $R\circ f$ follows immediately from the
+ decreasingness of $R$ and $f$.
+
+ For the supermodularity, let $S$ and $T$ be two sets such that
+ $S\subseteq T$. By decreasingness of $f$, we have:
+ \begin{displaymath}
+ \forall\,V,\quad f(T)\leq f(S)\quad\mathrm{and}\quad f(T\cup V)\leq f(S\cup V)
+ \end{displaymath}
+
+ Thus, by concavity of $R$:
+ \begin{displaymath}\label{eq:base}
+ \forall\,V,\quad\frac{R\big(f(S)\big)-R\big(f(S\cup V)\big)}{f(S)-f(S\cup V)}
+ \leq\frac{R\big(f(T)\big)-R\big(f(T\cup V)\big)}{f(T)-f(T\cup V)}
+ \end{displaymath}
+
+ $f$ is decreasing, so multiplying this last inequality by
+ $f(S)-f(S\cup V)$ and $f(T)-f(T\cup V)$ yields:
+ \begin{multline}
+ \forall V,\quad\Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(T)-f(T\cup V)\big)\\
+ \leq \Big(R\big(f(T)\big)-R\big(f(T\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big)
+ \end{multline}
+
+ $f$ is submodular, so:
+ \begin{displaymath}
+ f(T\cup V)-f(T)\leq f(S\cup V) - f(S)
+ \end{displaymath}
+
+ $R\circ f$ is increasing, so:
+ \begin{displaymath}
+ R\big(f(S)\big)-R\big(f(S\cup V)\big)\leq 0
+ \end{displaymath}
+
+ By combining the two previous inequalities, we get:
+ \begin{multline*}
+ \forall V,\quad\Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big)\\
+ \leq \Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(T)-f(T\cup V)\big)
+ \end{multline*}
+
+ Injecting this last inequality into \eqref{eq:base} gives:
+ \begin{multline*}
+ \forall V,\quad\Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big)\\
+ \leq \Big(R\big(f(T)\big)-R\big(f(T\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big)
+ \end{multline*}
+
+ Dividing left and right by $f(S)-f(S\cup V)$ yields:
+ \begin{displaymath}
+ \forall V,\quad R\big(f(S)\big)-R\big(f(S\cup V)\big)
+ \leq R\big(f(T)\big)-R\big(f(T\cup V)\big)
+ \end{displaymath}
+ which is exactly the supermodularity of $R\circ f$.
+\end{proof}
+
+
+
\section{Understanding the recommender system}
\subsection{General problem}