summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--notes2.tex149
1 files changed, 130 insertions, 19 deletions
diff --git a/notes2.tex b/notes2.tex
index 51d50ba..92eabb5 100644
--- a/notes2.tex
+++ b/notes2.tex
@@ -5,6 +5,7 @@
\newtheorem{lemma}{Lemma}
\newtheorem{fact}{Fact}
\newtheorem{example}{Example}
+\newtheorem{prop}{Proposition}
\newcommand{\var}{\mathop{\mathrm{Var}}}
\newcommand{\condexp}[2]{\mathop{\mathbb{E}}\left[#1|#2\right]}
\newcommand{\expt}[1]{\mathop{\mathbb{E}}\left[#1\right]}
@@ -18,34 +19,144 @@
\section{Problem}
\begin{itemize}
-\item $D = (x_i)_{1\leq i\leq n}$
-\item $(x_i)_{1\leq i\leq n}$ sampled in an i.i.d fashion from $\mu$
+\item database $D = (X_i)_{1\leq i\leq n}$
+\item $(X_i)_{1\leq i\leq n}\in\big(\mathbf{R^d}\big)^n$ sampled in an i.i.d
+ fashion from the probability distribution $\mu$
\end{itemize}
-There is a function $F$ and you are interested in estimating the value
-$F(\mu)$. We assume that you have an estimation scheme $\tilde{F}$,
-which given a set of data points $S$ returns an estimation
-$\tilde{F}(S)$ which is optimal in some sense. Your also given a
-revenue function $R$ which is a decreasing function of the estimation
-error. Then the value $V$ of the databse is defined by:
+We assume that there is a common variable $P$ which is the underlying
+phenomenon that we are interesting in, and all the variables in the database,
+are noisy realisations of this phenomenon:
\begin{displaymath}
- V(D) = \max_{S\subseteq D} R\left(| F(\mu) - \tilde{F} |\right)
+ X_i = P + N_i
\end{displaymath}
+where the $N_i$ are pairwise independent and also independent from $H$.
-\begin{example}
-
-\end{example}
-\begin{fact}
+We are interested in defining the $\emph{value}$ of a subset $S$ of the
+database $D$. The approaches to such a definition can be classified in two main
+families:
+\begin{itemize}
+ \item \emph{Information theoretic:} We use the entropy of $P$ as a measure
+ of the uncertainty. Then the value of a subset $S$ is the decrease of
+ entropy induced by revealing it:
+ \begin{displaymath}
+ V(S) = H(P) - H(P\,|\,S)
+ \end{displaymath}
+ \item \emph{Statistical:} in this case you are trying to estimate the
+ phenomenon. The variance of the estimation is used as a measure of
+ the uncertainty. The value of a set $S$ can be defined as the average
+ reduction of the variance over all the points in the database once you
+ observe $S$:
+ \begin{displaymath}
+ V(S) = \frac{1}{|D|}\sum_{x\in D} \sigma_x^2 - \sigma_{x|A}^2
+ \end{displaymath}
+\end{itemize}
+
+Once you have defined a notion of value, there are several problems you can
+address:
+\begin{enumerate}
+ \item \emph{budget auctions:} the points in the database are associated
+ with users. Each user $i$ has a cost $c_i$ for revealing his data. You
+ are given a budget $B$ and you want to select a subset $S$ of users and
+ a payment scheme which is truthful. The value of the subset
+ $S$ should be as big as possible with the constraint that the payments
+ should stay within budget.
+ \item \emph{value sharing:} the goal is to find a value sharing method to
+ split the whole value of a subset $S$ among its participants.
+ \item \emph{k-best auctions:} this one is very similar to \emph{budget
+ auctions}, but instead of having a budget constraint, the constraint is
+ on the number of people in the subset $S$.
+\end{enumerate}
+
+These problems have already been studied, and optimal or near-optimal solution
+are already known when the value function is submodular. Fortunately, it can be
+shown that the information theoretic value defined above is submodular.
+
+\section{Submodularity}
+
+In this section, we will consider that we are given a \emph{universe} set $U$.
+A set function $f$ is a function defined on the power set of $U$, $\mathfrak{P}(U)$.
+
+A set function $f$ defined on $\mathfrak{P}(U)$ will be said \emph{increasing} if
+it is increasing with regards to inclusion, that is:
+
+\begin{displaymath}
+ \forall\,S\subseteq T,\quad f(S)\leq f(T)
+\end{displaymath}
+
+A \emph{decreasing} function on $\mathfrak{P}(U)$ is defined similarly.
+
+A set function $f$ defined on $\mathfrak{P}(U)$ is said to be
+\emph{submodular} if it verifies the diminishing returns property, that is,
+the marginal increments when adding a point to a set, is a set decreasing
+function. More formally, for any point $x$ in $U$, we can define the marginal
+increment of $f$ regarding $x$, it is the set function defined as:
+\begin{displaymath}
+ \Delta_x f(S) = f(S\cup\{x\}) - f(S)
+\end{displaymath}
+Then, $f$ is \emph{submodular} iff. for all $x$ in $U$, $\Delta_x f$ is a set
+decreasing function.
- \begin{itemize}
- \item If $R$ is decreasing then $V$ is increasing in the size of $D$.
- \item If $R$ is concave then $V$ is supermodular.
- \end{itemize}
-\end{fact}
+Similarly, a \emph{supermodular} is a function whose marginal increments are set
+increasing functions.
+\begin{prop}
+ Let $R:\mathbf{R}\rightarrow \mathbf{R}$ be a decreasing concave function and
+ $f:\mathfrak{P}(U)\rightarrow\mathbf{R}$ be a decreasing submodular function,
+ then the composed function $R\circ f$ is increasing and supermodular.
+\end{prop}
\begin{proof}
+ The increasingness of $R\circ f$ follows immediately from the decreasingness
+ of $R$ and $f$.
+
+ For the supermodularity, let $S$ and $T$ be two sets such that $S\subseteq
+ T$. By decreasingness of $f$, we have:
+ \begin{displaymath}
+ \forall\,V,\quad f(T)\leq f(S)\quad\mathrm{and}\quad f(T\cup V)\leq f(S\cup V)
+ \end{displaymath}
+
+ Thus, by concavity of $R$:
+ \begin{displaymath}\label{eq:base}
+ \forall\,V,\quad\frac{R\big(f(S)\big)-R\big(f(S\cup V)\big)}{f(S)-f(S\cup V)}
+ \leq\frac{R\big(f(T)\big)-R\big(f(T\cup V)\big)}{f(T)-f(T\cup V)}
+ \end{displaymath}
+ $f$ is decreasing, so multiplying this last inequality by
+ $f(S)-f(S\cup V)$ and $f(T)-f(T\cup V)$ yields:
+ \begin{multline}
+ \forall V,\quad\Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(T)-f(T\cup V)\big)\\
+ \leq \Big(R\big(f(T)\big)-R\big(f(T\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big)
+ \end{multline}
+
+ $f$ is submodular, so:
+ \begin{displaymath}
+ f(T\cup V)-f(T)\leq f(S\cup V) - f(S)
+ \end{displaymath}
+
+ $R\circ f$ is increasing, so:
+ \begin{displaymath}
+ R\big(f(S)\big)-R\big(f(S\cup V)\big)\leq 0
+ \end{displaymath}
+
+ By combining the two previous inequalities, we get:
+ \begin{multline*}
+ \forall V,\quad\Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big)\\
+ \leq \Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(T)-f(T\cup V)\big)
+ \end{multline*}
+
+ Injecting this last inequality into \eqref{eq:base} gives:
+ \begin{multline*}
+ \forall V,\quad\Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big)\\
+ \leq \Big(R\big(f(T)\big)-R\big(f(T\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big)
+ \end{multline*}
+
+ Dividing left and right by $f(S)-f(S\cup V)$ yields:
+ \begin{displaymath}
+ \forall V,\quad R\big(f(S)\big)-R\big(f(S\cup V)\big)
+ \leq R\big(f(T)\big)-R\big(f(T\cup V)\big)
+ \end{displaymath}
+ which is exactly the supermodularity of $R\circ f$.
\end{proof}
-\end{document} \ No newline at end of file
+\end{document}