summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--slides/BudgetFeasibleExperimentalDesign.tex20
1 files changed, 17 insertions, 3 deletions
diff --git a/slides/BudgetFeasibleExperimentalDesign.tex b/slides/BudgetFeasibleExperimentalDesign.tex
index cc8a1a6..bb39ebd 100644
--- a/slides/BudgetFeasibleExperimentalDesign.tex
+++ b/slides/BudgetFeasibleExperimentalDesign.tex
@@ -732,14 +732,28 @@ $L(\lambda^*)$ is:
% \vspace{0.5cm}
\begin{block}{Technical Lemma}
\begin{displaymath}
- L(\lambda^*) \leq 2 OPT + V(\{i^*\})
+ L(\lambda^*) \leq 2 OPT + 2V(\{i^*\})
\end{displaymath}
\end{block}
\end{itemize}
- \pause
- Proved by showing that $L(\lambda)\leq 2 F(\lambda)$, where $F$ the multilinear relaxation of $V$. %using \emph{pipage rounding} [Ageev and Sviridenko 2004]
+% \pause
+% Proved by showing that $L(\lambda)\leq 2 F(\lambda)$, where $F$ the multilinear relaxation of $V$. %using \emph{pipage rounding} [Ageev and Sviridenko 2004]
\end{frame}
+\begin{frame}{Proof Steps}
+ \begin{block}{Technical Lemma}
+ \begin{displaymath}
+ L(\lambda^*) \leq 2 OPT + 2V(\{i^*\})
+ \end{displaymath}
+ \end{block}
+\uncover<2->{For all $\lambda\in [0,1]^N$, we show that $L(\lambda) \leq 2F(\lambda)$, where $F$ the multi-linear relaxation of $V$.\\
+\bigskip}
+\uncover<3->{
+We show this by establishing first that $\frac{\partial_i F(\lambda)}{\partial_i L(\lambda)}\geq \frac{1}{2}$, and arguing about the minima of $\frac{F(\lambda)}{L(\lambda)}$ over the simplex.\\
+\bigskip
+}
+\uncover<4>{Finally, we show that $F(\lambda^*)\leq OPT+V(\{i^*\})$ through pipage rounding.}
+\end{frame}
\begin{comment}
\vspace{0.5cm}
\pause