diff options
| -rw-r--r-- | appendix.tex | 66 | ||||
| -rw-r--r-- | conclusion.tex | 4 | ||||
| -rw-r--r-- | main.tex | 10 | ||||
| -rw-r--r-- | paper.tex | 4 | ||||
| -rw-r--r-- | problem.tex | 10 |
5 files changed, 54 insertions, 40 deletions
diff --git a/appendix.tex b/appendix.tex index f9564c3..9175e34 100644 --- a/appendix.tex +++ b/appendix.tex @@ -1,3 +1,30 @@ +\section{Properties of the Value Function $V$} \label{app:properties} +For the sake of concreteness, we prove below the positivity, monotonicity, and submodularity of $V(S) = \log\det(I_d+X_S^TX_S)$ from basic principles. We note however that these properties hold more generally for the information gain under a wider class of models than the linear model with Gaussian noise and prior that we study here: we discuss this in more detail in Appendix~\ref{sec:ext}. + +For two symmetric matrices $A$ and $B$, we write $A\succ B$ ($A\succeq B$) if +$A-B$ is positive definite (positive semi-definite). This order allows us to +define the notion of a \emph{decreasing} as well as \emph{convex} matrix +function, similarly to their real counterparts. With this definition, matrix +inversion is decreasing and convex over symmetric positive definite +matrices (see Example 3.48 p. 110 in \cite{boyd2004convex}). + +The positivity of $V(S)$ follows from the fact that $X_S^TX_S$ is positive semi-definite and, as such $I_d+X_S^TX_S\succeq I_d$, so all its eigenvalues are larger or equal to one, and they are all one if and only if $S=\emptyset$. The marginal contribution of item $i\in\mathcal{N}$ to set + $S\subseteq \mathcal{N}$ can be written as +\begin{align} +V(S\cup \{i\}) - V(S)& = \frac{1}{2}\log\det(I_d + + \T{X_S}X_S + x_i\T{x_i}) + - \frac{1}{2}\log\det(I_d + \T{X_S}X_S)\nonumber\\ + & = \frac{1}{2}\log\det(I_d + x_i\T{x_i}(I_d + +\T{X_S}X_S)^{-1}) + = \frac{1}{2}\log(1 + \T{x_i}A(S)^{-1}x_i)\label{eq:marginal_contrib} +\end{align} +where $A(S) \defeq I_d+ \T{X_S}X_S$, and the last equality follows from the +Sylvester's determinant identity~\cite{sylvester}. Monotonicity therefore follows from the fact that $A(S)^{-1}$ is positive semidefinite. Finally, since the inverse is decreasing over positive definite matrices, we have +\begin{gather} + \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1}. \label{eq:inverse} +\end{gather} +and submodularity also follows. \qed + \section{Proofs of Statements in Section~\ref{sec:concave}} \subsection{Proof of Lemma~\ref{lemma:relaxation-ratio}}\label{proofofrelaxation-ratio} @@ -37,18 +64,9 @@ P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\big(V(S\cup\{i\}) - V(S)\big). \end{displaymath} - The marginal contribution of $i$ to - $S$ can be written as -\begin{align*} -V(S\cup \{i\}) - V(S)& = \frac{1}{2}\log\det(I_d - + \T{X_S}X_S + x_i\T{x_i}) - - \frac{1}{2}\log\det(I_d + \T{X_S}X_S)\\ - & = \frac{1}{2}\log\det(I_d + x_i\T{x_i}(I_d + -\T{X_S}X_S)^{-1}) - = \frac{1}{2}\log(1 + \T{x_i}A(S)^{-1}x_i) -\end{align*} -where $A(S) \defeq I_d+ \T{X_S}X_S$, and the last equality follows from the -Sylvester's determinant identity~\cite{sylvester}. +Recall from \eqref{eq:marginal_contrib} that the marginal contribution of $i$ to $S$ is given by +$$V(S\cup \{i\}) - V(S) =\frac{1}{2}\log(1 + \T{x_i}A(S)^{-1}x_i), $$ +where $A(S) = I_d+ \T{X_S}X_S$. % $ V(S\cup\{i\}) - V(S) = \frac{1}{2}\log\left(1 + \T{x_i} A(S)^{-1}x_i\right)$. Using this, \begin{displaymath} @@ -58,7 +76,7 @@ Using this, \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big) \end{displaymath} The computation of the derivative of $L$ uses standard matrix - calculus: writing $\tilde{A}(\lambda) = I_d+\sum_{i\in + calculus: writing $\tilde{A}(\lambda) \defeq I_d+\sum_{i\in \mathcal{N}}\lambda_ix_i\T{x_i}$, \begin{displaymath} \det \tilde{A}(\lambda + h\cdot e_i) = \det\big(\tilde{A}(\lambda) @@ -76,14 +94,7 @@ Using this, \partial_i L(\lambda) =\frac{1}{2} \T{x_i}\tilde{A}(\lambda)^{-1}x_i. \end{displaymath} - -For two symmetric matrices $A$ and $B$, we write $A\succ B$ ($A\succeq B$) if -$A-B$ is positive definite (positive semi-definite). This order allows us to -define the notion of a \emph{decreasing} as well as \emph{convex} matrix -function, similarly to their real counterparts. With this definition, matrix -inversion is decreasing and convex over symmetric positive definite -matrices (see Example 3.48 p. 110 in \cite{boyd2004convex}). -In particular, +Recall from \eqref{eq:inverse} that the monotonicity of the matrix inverse over positive definite matrices implies \begin{gather*} \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1} \end{gather*} @@ -96,8 +107,8 @@ for all $S\subseteq\mathcal{N}\setminus\{i\}$. Hence, & \geq \frac{1}{4} \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_{\mathcal{N}}^\lambda(S) - \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\ - &\hspace{-3.5em}+\frac{1}{4} + \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big) + +\frac{1}{4} \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_{\mathcal{N}}^\lambda(S\cup\{i\}) \log\Big(1 + \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\ @@ -115,7 +126,7 @@ Hence, \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i. \end{displaymath} Finally, using that the inverse is a matrix convex function over symmetric -positive definite matrices: +positive definite matrices (see Appendix~\ref{app:properties}): \begin{displaymath} \partial_i F(\lambda) \geq \frac{1}{4} @@ -126,7 +137,7 @@ positive definite matrices: \end{displaymath} Having bound the ratio between the partial derivatives, we now bound the ratio -$F(\lambda)/L(\lambda)$ from below. Consider the following cases. +$F(\lambda)/L(\lambda)$ from below. Consider the following three cases. First, if the minimum is attained as $\lambda$ converges to zero in, \emph{e.g.}, the $l_2$ norm, by the Taylor approximation, one can write: @@ -643,7 +654,6 @@ The complexity of the mechanism is given by the following lemma. \end{proof} Finally, we prove the approximation ratio of the mechanism. - We use the following lemma from \cite{chen} which bounds $OPT$ in terms of the value of $S_G$, as computed in Algorithm \ref{mechanism}, and $i^*$, the element of maximum value. @@ -666,8 +676,8 @@ OPT \leq \frac{10e\!-\!3 + \sqrt{64e^2\!-\!24e\!+\!9}}{2(e\!-\!1)} V(S^*)\! + \! \varepsilon . \end{equation} -To see this, let $L^*_{c_{-i^*}}$ be the true maximum value of $L$ subject to -$\lambda_{c_{-i^*}}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. From line +To see this, let $L^*_{c_{-i^*}}$ be the maximum value of $L$ subject to +$\lambda_{i^*}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. From line \ref{relaxexec} of Algorithm~\ref{mechanism}, we have $L^*_{c_{-i^*}}-\varepsilon\leq OPT_{-i^*}' \leq L^*_{c_{-i^*}}+\varepsilon$. diff --git a/conclusion.tex b/conclusion.tex index e69de29..695dfb7 100644 --- a/conclusion.tex +++ b/conclusion.tex @@ -0,0 +1,4 @@ +To be written. Will contain +(a) list of extensions with a forward pointer to Appendix +(b) some concluding remark that we initiated the area, the opt criteria is not a priori clear, etc. + @@ -57,7 +57,7 @@ To obtain this result, we use the following modified version of Myerson's theore %variant of Myerson's theorem. \begin{lemma}\label{thm:myerson-variant} -\sloppy A normalized mechanism $\mathcal{M} = (S,p)$ for a single parameter auction is + A normalized mechanism $\mathcal{M} = (S,p)$ for a single parameter auction is $\delta$-truthful if: (a) $S$ is $\delta$-monotone, \emph{i.e.}, for any agent $i$ and $c_i' \leq c_i-\delta$, for any @@ -65,11 +65,8 @@ fixed costs $c_{-i}$ of agents in $\mathcal{N}\setminus\{i\}$, $i\in S(c_i, c_{-i})$ implies $i\in S(c_i', c_{-i})$, and (b) agents are paid \emph{threshold payments}, \emph{i.e.}, for all $i\in S(c)$, $p_i(c)=\inf\{c_i': i\in S(c_i', c_{-i})\}$. \end{lemma} -\fussy - -We can now state our main result, which is proved in Appendix~\ref{sec:proofofmainthm}: +Lemma~\ref{thm:myerson-variant} allow us to incorporate our relaxation in the above framework, yielding the following theorem: \begin{theorem}\label{thm:main} - \sloppy For any $\delta>0$, and any $\epsilon>0$, there exists a $\delta$-truthful, individually rational and budget feasible mechanim for \EDP{} that runs in time $O\big(poly(n, d, \log\log\frac{B}{b\varepsilon\delta})\big)$ @@ -82,6 +79,7 @@ We can now state our main result, which is proved in Appendix~\ref{sec:proofofma \simeq 12.98V(S^*) + \varepsilon.$ % \end{align*} \end{theorem} +The proof of the theorem, as well as our proposed mechanism, can be found in Appendix~\ref{sec:proofofmainthm}. In addition, we prove the following simple lower bound, proved in Appendix~\ref{proofoflowerbound}. \begin{theorem}\label{thm:lowerbound} @@ -89,3 +87,5 @@ There is no $2$-approximate, truthful, budget feasible, individually rational mechanism for EDP. \end{theorem} + + @@ -35,8 +35,8 @@ \input{approximation} \section{Mechanism for \SEDP{}}\label{sec:mechanism} \input{main} -%\section{Conclusion} -%\input{conclusion} +\section{Conclusion} +\input{conclusion} \bibliographystyle{abbrvnat} \bibliography{notes} \appendix diff --git a/problem.tex b/problem.tex index 851f691..89ffa9d 100644 --- a/problem.tex +++ b/problem.tex @@ -27,7 +27,7 @@ Then, \E\ estimates $\beta$ through \emph{maximum a posteriori estimation}: \emp \end{align} where the last equality is obtained by setting $\nabla_{\beta}\prob(\beta\mid y_S)$ to zero and solving the resulting linear system; in \eqref{ridge}, $X_S\defeq[x_i]_{i\in S}\in \reals^{|S|\times d}$ is the matrix of experiment features and $y_S\defeq[y_i]_{i\in S}\in\reals^{|S|}$ are the observed measurements. -This optimization, commonly known as \emph{ridge regression}, includes an additional quadratic penalty term compared to the standard least squares estimation. +This optimization, commonly known as \emph{ridge regression}, includes an additional quadratic penalty term $\beta^TR\beta$ compared to the standard least squares estimation. % under \eqref{model}, the maximum likelihood estimator of $\beta$ is the \emph{least squares} estimator: for $X_S=[x_i]_{i\in S}\in \reals^{|S|\times d}$ the matrix of experiment features and %$y_S=[y_i]_{i\in S}\in\reals^{|S|}$ the observed measurements, %\begin{align} \hat{\beta} &=\max_{\beta\in\reals^d}\prob(y_S;\beta) =\argmin_{\beta\in\reals^d } \sum_{i\in S}(\T{\beta}x_i-y_i)^2 \nonumber\\ @@ -109,11 +109,11 @@ the optimal value achievable in the full-information case. reduces to EDP with dimension $d=1$ by mapping the weight of each item, say, $w_i$, to an experiment with $x_i^2=w_i$.% Moreover, \eqref{modified} is submodular, monotone and satisfies $V(\emptyset) = 0$. - Note that \eqref{modified} is a submodular set function, \emph{i.e.}, -$V(S)+V(T)\geq V(S\cup T)+V(S\cap T)$ for all $S,T\subseteq \mathcal{N}$. It is +The value function \eqref{modified} has the following properties, which are proved in Appendix~\ref{app:properties}. First, it is non-negative, \emph{i.e.}, $V(S)\geq 0$ +for all $S\subseteq\mathcal{N}$. Second, it is also monotone, \emph{i.e.}, $V(S)\leq V(T)$ for all $S\subset T$, with -$V(\emptyset)=0$. Finally, it is non-negative, \emph{i.e.}, $V(S)\geq 0$ -for all $S\subseteq\mathcal{N}$, since the matrix $\T{X_S}X_S$ is positive semi-definite for all $S\subseteq \mathcal{N}$. +$V(\emptyset)=0$. Finally, it is a submodular, \emph{i.e.}, +$V(S)+V(T)\geq V(S\cup T)+V(S\cap T)$ for all $S,T\subseteq \mathcal{N}$. %Finally, we define the strategic version of \EDP{} (denoted by \SEDP) by adding the additional constraints of truthfulness, individual rationality, and normal payments, as described in the previous section. The above three properties imply that a greedy algorithm yields a constant approximation ratio to \EDP. In particular, consider the greedy algorithm in which, for |
