summaryrefslogtreecommitdiffstats
path: root/appendix.tex
diff options
context:
space:
mode:
Diffstat (limited to 'appendix.tex')
-rw-r--r--appendix.tex7
1 files changed, 2 insertions, 5 deletions
diff --git a/appendix.tex b/appendix.tex
index 67ae7cc..3685c2f 100644
--- a/appendix.tex
+++ b/appendix.tex
@@ -1,4 +1,3 @@
-\section{Proof of Proposition~\ref{prop:relaxation}}
\subsection{Proof of Lemma~\ref{lemma:relaxation-ratio}}\label{proofofrelaxation-ratio}
%\begin{proof}
@@ -217,9 +216,7 @@ the proof of the lemma. \qed
attained at one of its limit, at which either the $i$-th or $j$-th component of
$\lambda_\varepsilon$ becomes integral.
\end{proof}
-
-\subsection*{End of the proof of Proposition~\ref{prop:relaxation}}
-
+\subsection{Proof of Proposition~\ref{prop:relaxation}}\label{proofofproprelaxation}
Let us consider a feasible point $\lambda^*\in[0,1]^{n}$ such that
$L(\lambda^*) = L^*_c$. By applying Lemma~\ref{lemma:relaxation-ratio} and
Lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
@@ -242,7 +239,7 @@ one fractional component such that
\begin{equation}\label{eq:e2}
F(\bar{\lambda}) \leq OPT + \max_{i\in\mathcal{N}} V(i).
\end{equation}
-Together, \eqref{eq:e1} and \eqref{eq:e2} imply the proposition.\qedhere
+Together, \eqref{eq:e1} and \eqref{eq:e2} imply the proposition.\qed
\section{Proof of Proposition~\ref{prop:monotonicity}}