summaryrefslogtreecommitdiffstats
path: root/appendix.tex
diff options
context:
space:
mode:
Diffstat (limited to 'appendix.tex')
-rw-r--r--appendix.tex19
1 files changed, 5 insertions, 14 deletions
diff --git a/appendix.tex b/appendix.tex
index e964a40..682fce2 100644
--- a/appendix.tex
+++ b/appendix.tex
@@ -176,7 +176,7 @@ the proof of the lemma. \qed
% and $F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda})$.
%\end{lemma}
\subsection{Proof of Lemma~\ref{lemma:rounding}}\label{proofoflemmarounding}
-\begin{proof}
+%\begin{proof}
We give a rounding procedure which, given a feasible $\lambda$ with at least
two fractional components, returns some feasible $\lambda'$ with one less fractional
component such that $F(\lambda) \leq F(\lambda')$.
@@ -215,10 +215,10 @@ the proof of the lemma. \qed
which is positive by submodularity of $V$. Hence, the maximum of
$F_\lambda$ over the interval given in \eqref{eq:convex-interval} is
attained at one of its limit, at which either the $i$-th or $j$-th component of
- $\lambda_\varepsilon$ becomes integral.
-\end{proof}
+ $\lambda_\varepsilon$ becomes integral. \qed
+%\end{proof}
\subsection{Proof of Proposition~\ref{prop:relaxation}}\label{proofofproprelaxation}
-Let us consider a feasible point $\lambda^*\in[0,1]^{n}$ such that
+The lower bound on $L^*_c$ follows immediately from the fact that $L$ extends $V$ to $[0,1]^n$. For the upper bound, let us consider a feasible point $\lambda^*\in \dom_c$ such that
$L(\lambda^*) = L^*_c$. By applying Lemma~\ref{lemma:relaxation-ratio} and
Lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
one fractional component such that
@@ -276,48 +276,39 @@ Proposition~\ref{prop:monotonicity}.
A(S) \defeq I_d + \sum_{i\in S} x_i\T{x_i}
\end{displaymath}
Let us also define $A_k\defeq A(\{x_1,\ldots,x_k\})$.
-
We have $\partial_i L(\lambda) = \T{x_i}\tilde{A}(\lambda)^{-1}x_i$. Since
$\tilde{A}(\lambda)\succeq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which
is the right-hand side of the lemma.
-
For the left-hand side, note that $\tilde{A}(\lambda) \preceq A_n$. Hence
$\partial_iL(\lambda)\geq \T{x_i}A_n^{-1}x_i$.
-
Using the Sherman-Morrison formula, for all $k\geq 1$:
\begin{displaymath}
\T{x_i}A_k^{-1} x_i = \T{x_i}A_{k-1}^{-1}x_i
- \frac{(\T{x_i}A_{k-1}^{-1}x_k)^2}{1+\T{x_k}A_{k-1}^{-1}x_k}
\end{displaymath}
-
By the Cauchy-Schwarz inequality:
\begin{displaymath}
(\T{x_i}A_{k-1}^{-1}x_k)^2 \leq \T{x_i}A_{k-1}^{-1}x_i\;\T{x_k}A_{k-1}^{-1}x_k
\end{displaymath}
-
Hence:
\begin{displaymath}
\T{x_i}A_k^{-1} x_i \geq \T{x_i}A_{k-1}^{-1}x_i
- \T{x_i}A_{k-1}^{-1}x_i\frac{\T{x_k}A_{k-1}^{-1}x_k}{1+\T{x_k}A_{k-1}^{-1}x_k}
\end{displaymath}
-
But $\T{x_k}A_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if
$0\leq a\leq 1$, so:
\begin{displaymath}
\T{x_i}A_{k}^{-1}x_i \geq \T{x_i}A_{k-1}^{-1}x_i
- \frac{1}{2}\T{x_i}A_{k-1}^{-1}x_i\geq \frac{\T{x_i}A_{k-1}^{-1}x_i}{2}
\end{displaymath}
-
By induction:
\begin{displaymath}
\T{x_i}A_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n}
\end{displaymath}
-
Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side
of the lemma's inequality.
\end{proof}
-
-Let us introduce the Lagrangian of problem, \eqref{eq:perturbed-primal}:
+Let us introduce the Lagrangian of problem \eqref{eq:perturbed-primal}:
\begin{displaymath}
\mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \defeq L(\lambda)