summaryrefslogtreecommitdiffstats
path: root/approximation.tex
diff options
context:
space:
mode:
Diffstat (limited to 'approximation.tex')
-rwxr-xr-xapproximation.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/approximation.tex b/approximation.tex
index cc278e1..1b94615 100755
--- a/approximation.tex
+++ b/approximation.tex
@@ -47,7 +47,7 @@ expectation of $V$ under the distribution $P_\mathcal{N}^\lambda$:
F(\lambda)
\defeq \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\big[V(S)\big]
% = \sum_{S\subseteq\mathcal{N}} P_\mathcal{N}^\lambda(S) V(S)
-= \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\left[ \log\det\left( I_d + \sum_{i\in S} x_i\T{x_i}\right) \right],\quad \lambda\in[0,1]^n.
+= \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\big[ \log\det\big( I_d + \textstyle\sum_{i\in S} x_i\T{x_i}\big) \big],\quad \lambda\in[0,1]^n.
\end{equation}
Function $F$ is an extension of $V$ to the domain $[0,1]^n$, as it equals $V$ on integer inputs: $F(\id_S) = V(S)$ for all
$S\subseteq\mathcal{N}$, where $\id_S$ denotes the indicator vector of $S$. %\citeN{pipage} have shown how to use this extension to obtain approximation guarantees for an interesting class of optimization problems through the \emph{pipage rounding} framework, which has been successfully applied in \citeN{chen, singer-influence}.
@@ -56,7 +56,7 @@ multi-linear extension \eqref{eq:multi-linear} cannot be optimized in
polynomial time for the value function $V$ we study here, given by \eqref{modified}. Hence, we introduce an extension $L:[0,1]^n\to\reals$ s.t.~
\begin{equation}\label{eq:our-relaxation}
L(\lambda) \defeq
-\log\det\left(I_d + \sum_{i\in\mathcal{N}} \lambda_i x_i\T{x_i}\right),
+\log\det\big(I_d + \textstyle\sum_{i\in\mathcal{N}} \lambda_i x_i\T{x_i}\big),
%= \log\det\left(\mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\bigg[I_d + \sum_{i\in S} x_i\T{x_i} \bigg]\right),
\quad \lambda\in[0,1]^n.
\end{equation}