diff options
Diffstat (limited to 'approximation.tex')
| -rw-r--r-- | approximation.tex | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/approximation.tex b/approximation.tex index 5e5ee11..4978279 100644 --- a/approximation.tex +++ b/approximation.tex @@ -1,7 +1,7 @@ Previous approaches towards designing truthful, budget feasible mechanisms for \textsc{Knapsack}~\cite{chen} and \textsc{Coverage}~\cite{singer-influence} build upon polynomial-time algorithms that compute an approximation of $OPT$, the optimal value in the full information case. Crucially, to be used in designing a truthful mechanism, such algorithms need also to be \emph{monotone}, in the sense that decreasing any cost $c_i$ leads to an increase in the estimation of $OPT$; %In the cases of \textsc{Knapsack} and~\textsc{Coverage}, as well as in the case of \EDP{}, the monotonicity property precludes using traditional approximation algorithms. -In the fist part of this section, we address this issue by designing a convex relaxation of \EDP{}, and showing that its solution can be used to approximate $OPT$. The objective of this relaxation is concave and self-concordant \cite{boyd2004convex} and, as such, there exists an algorithm that solves this relaxed problem with arbitrary accuracy in polynomial time. Unfortunately, the output of this algorithm may not necessarily be monotone. Nevertheless, in the second part of this section, we show that a solver of the relaxed problem can be used to construct a solver that is ``almost'' monotone. In Section~\ref{sec:main}, we show that this algorithm can be used to design a $\delta$-truthful mechanism for \EDP. +In the first part of this section, we address this issue by designing a convex relaxation of \EDP{}, and showing that its solution can be used to approximate $OPT$. The objective of this relaxation is concave and self-concordant \cite{boyd2004convex} and, as such, there exists an algorithm that solves this relaxed problem with arbitrary accuracy in polynomial time. Unfortunately, the output of this algorithm may not necessarily be monotone. Nevertheless, in the second part of this section, we show that a solver of the relaxed problem can be used to construct a solver that is ``almost'' monotone. In Section~\ref{sec:main}, we show that this algorithm can be used to design a $\delta$-truthful mechanism for \EDP. %As noted above, \EDP{} is NP-hard. Designing a mechanism for this problem, as @@ -92,7 +92,7 @@ In particular, for $L_c^*\defeq \max_{\lambda\in \dom_c} L(\lambda)$ the optimal \begin{proposition}\label{prop:relaxation} $OPT\leq L^*_c \leq 2 OPT + 2\max_{i\in\mathcal{N}}V(i)$. \end{proposition} -The proof of this proposition can be found in Appendix~\ref{proofofproprelaxation}. As we discuss in the next section, $L^*_c$ can be computed a polynomial time algorithm at arbitrary accuracy. However, the outcome of this computation may not necessarily be monotone; we address this by converting this poly-time estimator of $L^*_c$ to one that is ``almost'' monotone.%The optimization program \eqref{eq:non-strategic} extends naturally to such +The proof of this proposition can be found in Appendix~\ref{proofofproprelaxation}. As we discuss in the next section, $L^*_c$ can be computed by a poly-time algorithm at arbitrary accuracy. However, the outcome of this computation may not necessarily be monotone; we address this by converting this poly-time estimator of $L^*_c$ to one that is ``almost'' monotone.%The optimization program \eqref{eq:non-strategic} extends naturally to such %a relaxation. We define: %\begin{equation}\tag{$P_c$}\label{eq:primal} % L^*_c \defeq \max_{\lambda\in[0, 1]^{n}} |
