diff options
Diffstat (limited to 'proof.tex')
| -rw-r--r-- | proof.tex | 8 |
1 files changed, 2 insertions, 6 deletions
@@ -1,7 +1,6 @@ -\documentclass{IEEEtran} -%\usepackage{mathptmx} +\documentclass{acm_proc_article-sp} \usepackage[utf8]{inputenc} -\usepackage{amsmath,amsthm,amsfonts} +\usepackage{amsmath,amsfonts} \usepackage{algorithm} \usepackage{algpseudocode} \newtheorem{lemma}{Lemma} @@ -320,7 +319,6 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: & \geq \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}} \partial_i L_\mathcal{N}(\lambda) \end{align*} - \end{proof} \begin{lemma} @@ -361,7 +359,6 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \end{equation} Putting \eqref{eq:e1} and \eqref{eq:e2} together gives the results. - \end{proof} \begin{algorithm} @@ -443,7 +440,6 @@ The mechanism is budget feasible. OPT(V, \mathcal{N}, B) \leq \frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot C_\kappa(e-1) -5e +1}\right) V(S_M) \end{displaymath} - \end{proof} \begin{theorem} |
