summaryrefslogtreecommitdiffstats
path: root/proof.tex
diff options
context:
space:
mode:
Diffstat (limited to 'proof.tex')
-rw-r--r--proof.tex8
1 files changed, 2 insertions, 6 deletions
diff --git a/proof.tex b/proof.tex
index de8eb82..af8bbb2 100644
--- a/proof.tex
+++ b/proof.tex
@@ -1,7 +1,6 @@
-\documentclass{IEEEtran}
-%\usepackage{mathptmx}
+\documentclass{acm_proc_article-sp}
\usepackage[utf8]{inputenc}
-\usepackage{amsmath,amsthm,amsfonts}
+\usepackage{amsmath,amsfonts}
\usepackage{algorithm}
\usepackage{algpseudocode}
\newtheorem{lemma}{Lemma}
@@ -320,7 +319,6 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
& \geq \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
\partial_i L_\mathcal{N}(\lambda)
\end{align*}
-
\end{proof}
\begin{lemma}
@@ -361,7 +359,6 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\end{equation}
Putting \eqref{eq:e1} and \eqref{eq:e2} together gives the results.
-
\end{proof}
\begin{algorithm}
@@ -443,7 +440,6 @@ The mechanism is budget feasible.
OPT(V, \mathcal{N}, B) \leq \frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot
C_\kappa(e-1) -5e +1}\right) V(S_M)
\end{displaymath}
-
\end{proof}
\begin{theorem}