summaryrefslogtreecommitdiffstats
path: root/proofs.tex
diff options
context:
space:
mode:
Diffstat (limited to 'proofs.tex')
-rw-r--r--proofs.tex29
1 files changed, 18 insertions, 11 deletions
diff --git a/proofs.tex b/proofs.tex
index ba22501..eb1226c 100644
--- a/proofs.tex
+++ b/proofs.tex
@@ -6,10 +6,12 @@ budget feasibility follow the same steps as the analysis of \citeN{chen};
for the sake of completeness, we restate their proof in the Appendix.
The complexity of the mechanism is given by the following lemma.
+
\begin{lemma}[Complexity]\label{lemma:complexity}
For any $\varepsilon > 0$, the complexity of the mechanism is
$O(\text{poly}(n, d, \log\log \varepsilon^{-1}))$.
\end{lemma}
+
\begin{proof}
The value function $V$ in \eqref{modified} can be computed in time
$O(\text{poly}(n, d))$ and the mechanism only involves a linear
@@ -50,11 +52,12 @@ OPT
\end{equation}
To see this, let $OPT_{-i^*}'$ be the true maximum value of $L$ subject to
$\lambda_{i^*}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. Assume
-that on line 3 of algorithm~\ref{mechanism}, a quantity $\tilde{L}$ such that
+that on line 3 of Algorithm~\ref{mechanism}, a quantity $\tilde{L}$ such that
$\tilde{L}-\varepsilon\leq OPT_{-i^*}' \leq \tilde{L}+\varepsilon$ has been
computed (Lemma~\ref{lemma:complexity} states that this is computed in time
-within our complexity guarantee). If the condition on line 3 of the algorithm
-holds, then:
+within our complexity guarantee).
+
+If the condition on line 3 of the algorithm holds, then:
\begin{displaymath}
V(i^*) \geq \frac{1}{C}OPT_{-i^*}'-\frac{\varepsilon}{C} \geq
\frac{1}{C}OPT_{-i^*} -\frac{\varepsilon}{C}
@@ -64,20 +67,24 @@ hence:
\begin{equation}\label{eq:bound1}
OPT\leq (1+C)V(i^*) + \varepsilon
\end{equation}
-Note that $OPT_{-i^*}'\leq OPT'$. If the condition does not hold, from Lemmas
-\ref{lemma:relaxation} and \ref{lemma:greedy-bound}:
-\begin{align*}
- V(i^*) & \stackrel{}\leq \frac{1}{C}OPT_{-i^*}' + \frac{\varepsilon}{C}
- \leq \frac{1}{C} \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}\\
- & \leq \frac{1}{C}\left(\frac{2e}{e-1}\big(3 V(S_G)
+
+If the condition does not hold, by observing that $OPT'_{-i^*}\leq OPT'$ and
+applying Lemma~\ref{lemma:relaxation}, we get:
+\begin{displaymath}
+ V(i^*) \stackrel{}\leq \frac{1}{C}OPT_{-i^*}' + \frac{\varepsilon}{C}
+ \leq \frac{1}{C} \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}
+\end{displaymath}
+Applying Lemma~\ref{lemma:greedy-bound}:
+\begin{displaymath}
+ V(i^*) \leq \frac{1}{C}\left(\frac{2e}{e-1}\big(3 V(S_G)
+ 2 V(i^*)\big) + 2 V(i^*)\right) + \frac{\varepsilon}{C}
-\end{align*}
+\end{displaymath}
Thus, if $C$ is such that $C(e-1) -6e +2 > 0$,
\begin{align*}
V(i^*) \leq \frac{6e}{C(e-1)- 6e + 2} V(S_G)
+ \frac{(e-1)\varepsilon}{C(e-1)- 6e + 2}
\end{align*}
-Finally, using again Lemma~\ref{lemma:greedy-bound}, we get:
+Finally, using Lemma~\ref{lemma:greedy-bound} again, we get:
\begin{equation}\label{eq:bound2}
OPT(V, \mathcal{N}, B) \leq
\frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2}\right) V(S_G)