summaryrefslogtreecommitdiffstats
path: root/slides/slides.tex
diff options
context:
space:
mode:
Diffstat (limited to 'slides/slides.tex')
-rw-r--r--slides/slides.tex110
1 files changed, 64 insertions, 46 deletions
diff --git a/slides/slides.tex b/slides/slides.tex
index 1bccd02..2c4b3fa 100644
--- a/slides/slides.tex
+++ b/slides/slides.tex
@@ -30,36 +30,14 @@
\begin{frame}{Motivation}
\begin{center}
- \includegraphics<1-4>[scale=0.5]{1.pdf}
- \includegraphics<5>[scale=0.5]{2.pdf}
- \includegraphics<6>[scale=0.5]{3.pdf}
- \includegraphics<7>[scale=0.5]{4.pdf}
- \end{center}
-
- \begin{center}
- \begin{overprint}
- \onslide<1>\begin{center}$N$ users\end{center}
- \onslide<2>
- \begin{center}
- $x_i\in\mathbb{R}^d$: public features (e.g. age, sex, height, etc.)
- \end{center}
- \onslide<3>
- \begin{center}
- $y_i\in\mathbb{R}$: private date (e.g. disease, etc.)
- \end{center}
- \onslide<4>
- \begin{center}
- Linear model: $y_i = \beta^Tx_i + \varepsilon_i$
- \end{center}
- \begin{displaymath}
- \beta^* = \arg\min_\beta \sum_i |y_i-\beta^Tx_i|^2
- \end{displaymath}
- \end{overprint}
+ \includegraphics<1>[scale=0.5]{1.pdf}
+ \includegraphics<2>[scale=0.5]{2.pdf}
+ \includegraphics<3>[scale=0.5]{3.pdf}
+ \includegraphics<4>[scale=0.5]{4.pdf}
\end{center}
\end{frame}
-
-
\begin{frame}{Challenges}
+ \pause
\begin{itemize}
\item Value of data?
\vspace{1cm}
@@ -72,6 +50,7 @@
\end{frame}
\begin{frame}{Contributions}
+ \pause
\begin{itemize}
\item case of the linear regression
\vspace{1cm}
@@ -95,7 +74,7 @@
\begin{frame}{Reverse auction}
\begin{itemize}
- \item set of $N$ sellers $\mathcal{A} = \{1,\ldots,N\}$ and a buyer
+ \item set of $N$ sellers: $\mathcal{A} = \{1,\ldots,N\}$; a buyer
\vspace{0.3cm}
\pause
\item $V$ value function of the buyer, $V:2^\mathcal{A}\rightarrow \mathbb{R}^+$
@@ -114,7 +93,7 @@
\begin{itemize}
\item Find $S\subset \mathcal{A}$ \alert{maximizing} $V(S)$
\vspace{0.3cm}
- \item Find \alert{payment} $p_i$ to seller $i$
+ \item Find \alert{payment} $p_i$ to seller $i\in S$
\end{itemize}
\end{block}
\end{frame}
@@ -179,14 +158,42 @@
\tableofcontents[currentsection]
\end{frame}
-\begin{frame}{Linear regression}
- Each user $i\in\mathcal{A}$ has:
+\begin{frame}{Linear Regression}
+ \begin{center}
+ \includegraphics<1-4>[scale=0.5]{5.pdf}
+ \includegraphics<5>[scale=0.5]{6.pdf}
+ \includegraphics<6>[scale=0.5]{7.pdf}
+ \includegraphics<7>[scale=0.5]{8.pdf}
+ \end{center}
+
+ \begin{center}
+ \begin{overprint}
+ \onslide<1>\begin{center}$N$ users\end{center}
+ \onslide<2>
+ \begin{center}
+ $x_i$: public features (e.g. age, gender, height, etc.)
+ \end{center}
+ \onslide<3>
+ \begin{center}
+ $y_i$: private data (e.g. disease, etc.)
+ \end{center}
+ \onslide<4>
+ \begin{center}
+ Gaussian Linear model: $y_i = \beta^Tx_i + \varepsilon_i$
+ \end{center}
+ \begin{displaymath}
+ \beta^* = \arg\min_\beta \sum_i |y_i-\beta^Tx_i|^2
+ \end{displaymath}
+ \end{overprint}
+ \end{center}
+\end{frame}
+
+\begin{frame}{Experimental design}
\begin{itemize}
- \item Public feature vector $x_i\in\mathbb{R}^d$
+ \item Public vector of features $x_i\in\mathbb{R}^d$
\item Private data $y_i\in\mathbb{R}$
\end{itemize}
- \pause
\vspace{0.5cm}
Gaussian linear model:
@@ -204,14 +211,14 @@
\begin{block}{Experimental Design}
\begin{displaymath}
- \textsf{\alert{maximize}}\quad V(S) = \log\det\left(I_d + \sum_{i\in S} x_i x_i^T\right),\quad S\subset\mathcal{A}
+ \textsf{\alert{maximize}}\quad V(S) = \log\det\left(I_d + \sum_{i\in S} x_i x_i^T\right)\quad \textsf{\alert{subject to}}\quad |S|\leq k
\end{displaymath}
\end{block}
\end{frame}
-\begin{frame}{Experimental design}
+\begin{frame}{Budgeted Experimental design}
\begin{displaymath}
- \textsf{\alert{maximize}}\quad V(S) = \log\det\left(I_d + \sum_{i\in S} x_i x_i^T\right),\quad S\subset\mathcal{A}
+ \textsf{\alert{maximize}}\quad V(S) = \log\det\left(I_d + \sum_{i\in S} x_i x_i^T\right)\quad \textsf{\alert{subject to}}\quad \sum_{i\in S}c_i\leq B
\end{displaymath}
\vspace{1cm}
@@ -233,7 +240,7 @@
\begin{frame}{Main result}
\begin{theorem}
There exists a budget feasible, individually rational and truthful mechanism for
- experimental design which runs in polynomial time. Its
+ budgeted experimental design which runs in polynomial time. Its
approximation ratio is:
\begin{displaymath}
\frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)}
@@ -243,7 +250,7 @@
\end{frame}
\begin{frame}{Sketch of proof}
- \begin{block}{Mechanism (Chen et. al, 2011)}
+ \begin{block}{Mechanism (Chen et. al, 2011) for submodular $V$}
\begin{itemize}
\item Find $i^* = \arg\max_i V(\{i\})$
\item Compute $S_G$ greedily
@@ -268,13 +275,24 @@
\vspace{0.5cm}
\pause
- \alert{Solution:} Replace $V(OPT_{-i^*})$ with $L^*$:
- \pause
- \begin{itemize}
- \item computable in polynomial time
+ \begin{columns}[c]
+ \begin{column}{0.53\textwidth}
+ \alert{Solution:} Replace $V(OPT_{-i^*})$ with \alert<7>{$L^*$}:
\pause
- \item close to $V(OPT_{-i^*})$
- \end{itemize}
+ \begin{itemize}
+ \item computable in polynomial time
+ \pause
+ \item close to $V(OPT_{-i^*})$
+ \end{itemize}
+ \end{column}
+ \pause
+ \begin{column}{0.45\textwidth}
+ \begin{itemize}
+ \item Knapsack (Chen et al., 2011)
+ \item Coverage (Singer, 2012)
+ \end{itemize}
+ \end{column}
+ \end{columns}
\end{frame}
\begin{frame}{Sketch of proof (2)}
@@ -316,9 +334,9 @@
\pause
\vspace{0.5cm}
- \begin{block}{Value function: entropy reduction}
+ \begin{block}{Value function: Information gain}
\begin{displaymath}
- V(S) = H(f) - H(f\mid Y_S),\quad S\subset\mathcal{A}
+ V(S) = H(f) - H(f\mid S),\quad S\subset\mathcal{A}
\end{displaymath}
\end{block}