From c7b0c48affdf7bb19417a4016ba2a871792fbca6 Mon Sep 17 00:00:00 2001 From: Thibaut Horel Date: Mon, 11 Feb 2013 19:02:57 -0800 Subject: Moving Chen's lemma --- main.tex | 14 +++----------- 1 file changed, 3 insertions(+), 11 deletions(-) (limited to 'main.tex') diff --git a/main.tex b/main.tex index 981eb05..fa8558e 100644 --- a/main.tex +++ b/main.tex @@ -17,21 +17,13 @@ element $i$ to be included is the one which maximizes the \end{align} This is repeated until the sum of costs of elements in $S$ reaches the budget constraint $B$. Denote by $S_G$ the set constructed by this heuristic and let -$i^*$ be the element of maximum value. Then, the following lemma holds: -\begin{lemma}~\cite{chen}\label{lemma:greedy-bound} -Let $S_G$ be the set computed by the greedy algorithm and let -$i^* = \argmax_{i\in\mathcal{N}} V(\{i\}).$ We have: -\begin{displaymath} -OPT \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big). -\end{displaymath} -\end{lemma} - -This lemma immediately implies that the following algorithm: +$i^*=\argmax_{i\in\mathcal{N}} V(\{i\})$ be the element of maximum value. Then, +the following algorithm: \begin{equation}\label{eq:max-algorithm} \textbf{if}\; V(\{i^*\}) \geq V(S_G)\; \textbf{return}\; \{i^*\} \;\textbf{else return}\; S_G \end{equation} -has an approximation ratio of $\frac{5e}{e-1}$. +has an approximation ratio of $\frac{5e}{e-1}$ \cite{chen}. \subsection{Submodular Maximization in the Strategic Case} -- cgit v1.2.3-70-g09d2