From a06ec5611efa6f08bcf6782c0657e2d04a47c3e2 Mon Sep 17 00:00:00 2001 From: Thibaut Horel Date: Fri, 26 Oct 2012 11:50:47 -0700 Subject: More details --- paper.tex | 20 +++++++++++++++++--- 1 file changed, 17 insertions(+), 3 deletions(-) (limited to 'paper.tex') diff --git a/paper.tex b/paper.tex index 4d02cad..55e7209 100644 --- a/paper.tex +++ b/paper.tex @@ -229,6 +229,16 @@ problem. Explain the goals: \section{Main result} +Explain: +\begin{itemize} + \item the mechanism uses the greedy heuristic + \item we know that the maximum of greedy and meatiest guy is a good + approximation, but not incentive compatible + \item instead compare the value of the meatiest guy to $L(x^*)$ (introduce + $L(x^*)$ which can be easily computed and is not too far from the greedy + value +\end{itemize} + \begin{algorithm}\label{mechanism} \caption{Mechanism for ridge regression} \begin{algorithmic}[1] @@ -251,11 +261,15 @@ problem. Explain the goals: \end{algorithmic} \end{algorithm} -Choosing $C=...$ we have: - \begin{theorem} The mechanism is truthful, individually rational, budget feasible. - Furthermore, by choosing $C= ...$ we get an approximation ratio of: + Furthermore, choosing: + \begin{multline*} + C = C^* = \frac{5e-1 + C_\mu(2e+1)}{2C_\mu(e-1)}\\ + + \frac{\sqrt{C_\mu^2(1+2e)^2 + + 2C_\mu(14e^2+5e+1) + (1-5e)^2}}{2C_\mu(e-1)} + \end{multline*} + we get an approximation ratio of: \begin{multline*} 1 + C^* = \frac{5e-1 + C_\mu(4e-1)}{2C_\mu(e-1)}\\ + \frac{\sqrt{C_\mu^2(1+2e)^2 -- cgit v1.2.3-70-g09d2