From 5db33d6a133669cb876f1b4da3c1c1c6fedd0d19 Mon Sep 17 00:00:00 2001 From: Stratis Ioannidis Date: Wed, 3 Jul 2013 20:05:28 -0700 Subject: approx --- problem.tex | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) (limited to 'problem.tex') diff --git a/problem.tex b/problem.tex index bb69120..a00e2f6 100644 --- a/problem.tex +++ b/problem.tex @@ -93,15 +93,13 @@ Each experiment is associated with a cost $c_i\in\reals_+$. Moreover, the experi The cost $c_i$ can capture, \emph{e.g.}, the amount the subject $i$ deems sufficient to incentivize her participation in the experiment. In the full-information case, the experiment costs are common knowledge; as such, the optimization problem that the experimenter wishes to solve is: -\begin{center} -\textsc{ExperimentalDesignProblem} (EDP) +\medskip\\\hspace*{\stretch{1}}\textsc{ExperimentalDesignProblem} (\EDP)\hspace*{\stretch{1}} \begin{subequations} \begin{align} \text{Maximize}\quad V(S) &= \log\det(I_d+\T{X_S}X_S) \label{modified} \\ \text{subject to}\quad \sum_{i\in S} c_i&\leq B \end{align}\label{edp} \end{subequations} -\end{center} We denote by \begin{equation}\label{eq:non-strategic} OPT = \max_{S\subseteq\mathcal{N}} \Big\{V(S) \;\Big| \; -- cgit v1.2.3-70-g09d2