From be95a466edbdf043bfe19ed9047e8abee231c6e4 Mon Sep 17 00:00:00 2001 From: Stratis Ioannidis Date: Sat, 3 Nov 2012 18:25:22 -0700 Subject: EDP --- problem.tex | 31 ++++++++++++++++++++++++++++--- 1 file changed, 28 insertions(+), 3 deletions(-) (limited to 'problem.tex') diff --git a/problem.tex b/problem.tex index 237894e..b8e6af8 100644 --- a/problem.tex +++ b/problem.tex @@ -38,8 +38,9 @@ the uncertainty on $\beta$, as captured by the entropy of its estimator. %\end{align} %There are several reasons -Value function \eqref{dcrit} has several appealing properties. To begin with, it is a submodular set function (see Lemma~\ref{...} and Thm.~\ref{...}). In addition, the maximization of convex relaxations of this function is a well-studied problem \cite{boyd}. Note that \eqref{dcrit} is undefined when $\mathrm{rank}(\T{X_S}X_S)1$, there is no $M$-approximate, truthful, budget feasible, individionally rational mechanism for a budget feasible reverse auction with value fuction $V(S) = \det{\T{X_S}X_S}$. +\end{lemma} +\begin{proof} +\input{proof_of_lower_bound1} +\end{proof} + +This negative result motivates us to study a problem with a modified objective: +\begin{center} +\textsc{ExperimentalDesign} (EDP) +\begin{subequations} +\begin{align} +\text{Maximize}\quad V(S) &= \log\det(I_d+\T{X_S}X_S) \label{modified} \\ +\text{subject to}\quad \sum_{i\in S} c_i&\leq B +\end{align}\label{edp} +\end{subequations} +\end{center} where $I_d\in \reals^{d\times d}$ is the identity matrix. +One possible interpretation of \eqref{modified} is that, prior to the auction, the experimenter has free access to $d$ experiments whose features form an orthonormal basis in $\reals^d$. However, \eqref{modified} can also be motivated in the context of \emph{Bayesian experimental design} \cite{chaloner1995bayesian}. In short, the objective \eqref{modified} arises naturally when the experimenter retrieves the model $\beta$ through \emph{ridge regression}, rather than the linear regression \eqref{leastsquares} over the observed data; we explore this connection in Section~\ref{sec:bed}. + +Note that maximizing \eqref{modified} is equivalent to maximizing \eqref{dcrit} in the full-information case. In particular, $\det(\T{X_S}X_S)> \det(\T{X_{S'}}X_{S'})$ iff $\det(I_d+\T{X_S}X_S)>\det(I_d+\T{X_{S'}}X_{S'})$. In addition, \eqref{edp} (and the equivalent problem with objective \eqref{dcrit}) are NP-hard; to see this, note that \textsc{Knapsack} reduces to EDP with dimension $d=1$ by mapping the weight of each item $w_i$ to an experiment with $x_i=w_i$. Nevertheless, \eqref{modified} is submodular, monotone and satifies $V(\emptyset) = 0$, allowing us to use the extensive machinery for the optimization of submodular functions, as well as recent results in the context of budget feasible auctions \cite{chen,singer-mechanisms}. -- cgit v1.2.3-70-g09d2