From e92f1202263bcbb19a83cce559cf0fb53e3537bd Mon Sep 17 00:00:00 2001 From: Thibaut Horel Date: Tue, 23 Oct 2012 17:08:29 -0700 Subject: Conform to STOC format for proof.tex --- proof.tex | 8 ++------ 1 file changed, 2 insertions(+), 6 deletions(-) (limited to 'proof.tex') diff --git a/proof.tex b/proof.tex index de8eb82..af8bbb2 100644 --- a/proof.tex +++ b/proof.tex @@ -1,7 +1,6 @@ -\documentclass{IEEEtran} -%\usepackage{mathptmx} +\documentclass{acm_proc_article-sp} \usepackage[utf8]{inputenc} -\usepackage{amsmath,amsthm,amsfonts} +\usepackage{amsmath,amsfonts} \usepackage{algorithm} \usepackage{algpseudocode} \newtheorem{lemma}{Lemma} @@ -320,7 +319,6 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: & \geq \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}} \partial_i L_\mathcal{N}(\lambda) \end{align*} - \end{proof} \begin{lemma} @@ -361,7 +359,6 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \end{equation} Putting \eqref{eq:e1} and \eqref{eq:e2} together gives the results. - \end{proof} \begin{algorithm} @@ -443,7 +440,6 @@ The mechanism is budget feasible. OPT(V, \mathcal{N}, B) \leq \frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot C_\kappa(e-1) -5e +1}\right) V(S_M) \end{displaymath} - \end{proof} \begin{theorem} -- cgit v1.2.3-70-g09d2