From c464d2fc6bdc81f9fa28c868fd1fca1987e6fa5b Mon Sep 17 00:00:00 2001 From: Stratis Ioannidis Date: Mon, 11 Feb 2013 17:19:34 -0800 Subject: math --- proofs.tex | 15 +++++++-------- 1 file changed, 7 insertions(+), 8 deletions(-) (limited to 'proofs.tex') diff --git a/proofs.tex b/proofs.tex index 2cff729..585e134 100644 --- a/proofs.tex +++ b/proofs.tex @@ -316,14 +316,13 @@ In particular, \begin{gather*} \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1} \end{gather*} -as $A(S)\leq A(S\cup\{i\})$. Observe that - \begin{gather*} - \forall S\subseteq\mathcal{N}\setminus\{i\},\quad - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq - P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\}),\\ - \forall S\subseteq\mathcal{N},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S) - \geq P_\mathcal{N}^\lambda(S). - \end{gather*} +as $A(S)\preceq A(S\cup\{i\})$. Observe that + % \begin{gather*} + % \forall +$P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})$ for all $S\subseteq\mathcal{N}\setminus\{i\}$, and + % ,\\ + $P_{\mathcal{N}\setminus\{i\}}^\lambda(S) \geq P_\mathcal{N}^\lambda(S),$ for all $S\subseteq\mathcal{N}$. + %\end{gather*} Hence, \begin{align*} \partial_i F(\lambda) -- cgit v1.2.3-70-g09d2