\begin{lemma}\label{lemma:monotone} Our mechanism for \EDP{} is monotone and budget feasible. \end{lemma} \begin{proof} Consider an agent $i$ with cost $c_i$ that is selected by the mechanism, and suppose that she reports a cost $c_i'\leq c_i$ while all other costs stay the same. Suppose that when $i$ reports $c_i$, $OPT'_{-i^*} \geq C V(i^*)$; then, as $s_i(c_i,c_{-i})=1$, $i\in S_G$. By reporting a cost $c_i'\leq c_i$, $i$ may be selected at an earlier iteration of the greedy algorithm. %using the submodularity of $V$, we see that $i$ will satisfy the greedy %selection rule: %\begin{displaymath} % i = \argmax_{j\in\mathcal{N}\setminus S} \frac{V(S\cup\{j\}) % - V(S)}{c_j} %\end{displaymath} %in an earlier iteration of the greedy heuristic. Denote by $S_i$ (resp. $S_i'$) the set to which $i$ is added when reporting cost $c_i$ (resp. $c_i'$). We have $S_i'\subseteq S_i$; in addition, $S_i'\subseteq S_G'$, the set selected by the greedy algorithm under $(c_i',c_{-i})$; if not, then greedy selection would terminate prior to selecting $i$ also when she reports $c_i$, a contradiction. Moreover, we have \begin{align*} c_i' & \leq c_i \leq \frac{B}{2}\frac{V(S_i\cup\{i\})-V(S_i)}{V(S_i\cup\{i\})} \leq \frac{B}{2}\frac{V(S_i'\cup\{i\})-V(S_i')}{V(S_i'\cup\{i\})} \end{align*} by the monotonicity and submodularity of $V$. Hence $i\in S_G'$. As $OPT'_{-i^*}$, is the optimal value of \eqref{relax} under relaxation $L$ when $i^*$ is excluded from $\mathcal{N}$, reducing the costs can only increase this value, so under $c'_i\leq c_i$ the greedy set is still allocated and $s_i(c_i',c_{-i}) =1$. Suppose now that when $i$ reports $c_i$, $OPT'_{-i^*} < C V(i^*)$. Then $s_i(c_i,c_{-i})=1$ iff $i = i^*$. Reporting $c_{i^*}'\leq c_{i^*}$ does not change $V(i^*)$ nor $OPT'_{-i^*} \leq C V(i^*)$; thus $s_{i^*}(c_{i^*}',c_{-i^*})=1$, so the mechanism is monotone. %\end{proof} %\begin{lemma}\label{lemma:budget-feasibility} %The mechanism is budget feasible. %\end{lemma} %\begin{proof} To show budget feasibility, suppose that $OPT'_{-i^*} < C V(i^*)$. Then the mechanism selects $i^*$. Since the bid of $i^*$ does not affect the above condition, the threshold payment of $i^*$ is $B$ and the mechanism is budget feasible. Suppose that $OPT'_{-i^*} \geq C V(i^*)$. Denote by $S_G$ the set selected by the greedy algorithm, and for $i\in S_G$, denote by $S_i$ the subset of the solution set that was selected by the greedy algorithm just prior to the addition of $i$---both sets determined for the present cost vector $c$. %Chen \emph{et al.}~\cite{chen} show that, Then for any submodular function $V$, and for all $i\in S_G$: %the reported cost of an agent selected by the greedy heuristic, and holds for %any submodular function $V$: \begin{equation}\label{eq:budget} \text{if}~c_i'\geq \frac{V(S_i\cup\{i\}) - V(S)}{V(S_G)} B~\text{then}~s_i(c_i',c_{-i})=0 \end{equation} In other words, if $i$ increases her cost to a value higher than $\frac{V(S_i\cup\{i\}) - V(S)}{V(S_G)}$, she will cease to be in the selected set $S_G$. As a result, \eqref{eq:budget} implies that the threshold payment of user $i$ is bounded by the above quantity. %\begin{displaymath} %\frac{V(S_i\cup\{i\}) - V(S_i)}{V(S_G)} = B %\end{displaymath} Hence, the total payment is bounded by the telescopic sum: \begin{displaymath} \sum_{i\in S_G} \frac{V(S_i\cup\{i\}) - V(S_i)}{V(S_G)} B = \frac{V(S_G)-V(\emptyset)}{V(S_G)} B=B\qed \end{displaymath} \end{proof}