We give a counterxample of the monotonicity of the maximum allocation rule defined in \eqref{eq:max-algorithm} for the value function $V$ defined in \eqref{obj}. We denote by $(e_1, e_2, e_3)$ the canonical basis of $\reals^3$ and define the following feature vectors: $x_1=e_1$, $x_2=\frac{1}{\sqrt{2}}\cos\frac{\pi}{5}e_2 + \frac{1}{\sqrt{2}}\sin\frac{\pi}{5}e_3$, $x_3=\frac{1}{\sqrt{2}}e_2$ and $x_4 = \frac{1}{2}e_3$, with associated costs $c_1 = \frac{5}{2}$, $c_2=c_3 = 1$ and $c_4=\frac{2}{3}$. We also assume that the budget of the auctioneer is $B=\frac{5}{2}$. Note that $V(x_i) = \log(1+\|x_i\|^2)$, so $x_1$ is the point of maximum value. Let us now compute the output of the greedy heuristic. We have: \begin{equation}\label{eq:local-bazinga} \frac{V(x_1)}{c_1} \simeq 0.277,\; \frac{V(x_2)}{c_2}= \frac{V(x_3)}{c_3} \simeq 0.405,\; \frac{V(x_4)}{c_4} \simeq 0.335 \end{equation} so the greedy heuristic will start by selecting $x_2$ or $x_3$. Without loss of generality, we can assume that it selected $x_2$. From the Sherman-Morrison formula we get: \begin{displaymath} V(\{x_i, x_j\}) - V(x_i) = \log\bigg(1+ \|x_j\|^2 - \frac{\ip{x_i}{x_j}^2}{1+\|x_i\|^2}\bigg) \end{displaymath} In particular, when $x_i$ and $x_j$ are orthogonal $V(\{x_i, x_j\}) = V(x_j)$. This allows us to compute: \begin{displaymath} \frac{V(\{x_2,x_3\})-V(x_2)}{c_3}=\log\bigg(1+\frac{1}{2} - \frac{1}{6}\cos^2\frac{\pi}{5}\bigg)\simeq 0.329 \end{displaymath} \begin{displaymath} \frac{V(\{x_2,x_4\})-V(x_2)}{c_4}=\frac{3}{2}\log\bigg(1+\frac{1}{4} - \frac{1}{12}\sin^2\frac{\pi}{5}\bigg)\simeq 0.299 \end{displaymath} Note that at this point $x_1$ cannot be selected without exceding the budget. Hence, the greedy heuristic will add $x_3$ to the greedy solution and returns the set $\{x_2, x_3\}$ with value: \begin{displaymath} V(\{x_2, x_3\}) = V(x_2) + V(\{x_2, x_3\}) - V(x_2)\simeq 0.734 \end{displaymath} In contrast, $V(x_1) \simeq 0.693$ so the mechanism will allocate to $\{x_2, x_3\}$. Let us now assume that user $3$ reduces her cost. It comes from \eqref{eq:local-bazinga} that the greedy heuristic will start by adding her to the greedy solution. Furthermore: \begin{displaymath} \frac{V(\{x_3,x_2\})-V(x_3)}{c_2}=\log\bigg(1+\frac{1}{2} - \frac{1}{6}\cos^2\frac{\pi}{5}\bigg)\simeq 0.329 \end{displaymath} \begin{displaymath} \frac{V(\{x_3,x_4\})-V(x_3)}{c_4} =\frac{3}{2}\log\bigg(1+\frac{1}{4}\bigg)\simeq 0.334 \end{displaymath} Hence, the greedy solution will be $\{x_3, x_4\}$ with value: \begin{displaymath} V(\{x_3, x_4\}) = V(x_3) + V(\{x_3, x_4\}) - V(x_3)\simeq 0.628 \end{displaymath} As a consequence the mechanism will allocate to user $1$ in this case. By reducing her cost, user 3, who was previously allocated, is now rejected by the mechanism. This contradicts its monotonicity.