\documentclass{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath, amsfonts, amsthm} \newtheorem{lemma}{Lemma} \newtheorem{proposition}{Proposition} \input{definitions} \begin{document} Let $c$ be a cost vector in $[0,1]^n$, and $x_1,\ldots,x_n$, $n$ vectors in $\mathbf{R}^d$ such that for all $i\in\{1,\ldots,n\}$, $b\leq \T{x_i}{x_i}\leq 1$ for some $b\in(0,1]$. Let us consider the following convex optimization problem: \begin{equation}\tag{$P_c$}\label{eq:primal} \begin{split} \mathrm{maximize}\quad & L(\lambda) \defeq\log\det\left(I_d + \sum_{i=1}^n \lambda_i x_i x_i^T\right)\\ \textrm{subject to}\quad & c^T\lambda \leq 1 \;;\; 0\leq\lambda\leq \mathbf{1} \end{split} \end{equation} We denote by $L^*_c$ its optimal value. Let $\alpha\in\mathbf{R}^+$, consider the perturbed optimization problem: \begin{equation}\tag{$P_{c, \alpha}$}\label{eq:perturbed-primal} \begin{split} \mathrm{maximize}\quad & L(\lambda) \defeq\log\det\left(I_d + \sum_{i=1}^n \lambda_i x_i x_i^T\right)\\ \textrm{subject to}\quad & c^T\lambda \leq 1 \;;\; \alpha\leq\lambda\leq \mathbf{1} \end{split} \end{equation} and denote by $L^*_c(\alpha)$ its optimal value. Note that we have $L^*_c = L^*_c(0)$. We will assume that $\alpha<\frac{1}{n}$ so that \eqref{eq:perturbed-primal} has at least one feasible point: $(\frac{1}{n},\ldots,\frac{1}{n})$. Let us introduce the lagrangian of problem, \eqref{eq:perturbed-primal}: \begin{displaymath} \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \defeq L(\lambda) + \T{\mu}(\lambda-\alpha\mathbf{1}) + \T{\nu}(\mathbf{1}-\lambda) + \xi(1-\T{c}\lambda) \end{displaymath} so that: \begin{displaymath} L^*_c(\alpha) = \min_{\mu, \nu, \xi\geq 0}\max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \end{displaymath} Similarly, we define $\mathcal{L}_{c}\defeq\mathcal{L}_{c, 0}$ the lagrangian of \eqref{eq:primal}. Let $\lambda^*$ be primal optimal for \eqref{eq:perturbed-primal}, and $(\mu^*, \nu^*, \xi^*)$ be dual optimal for the same problem. In addition to primal and dual feasibility, the KKT conditions give $\forall i\in\{1, \ldots, n\}$: \begin{gather*} \partial_i L(\lambda^*) + \mu_i^* - \nu_i^* - \xi^* c_i = 0\\ \mu_i^*(\lambda_i^* - \alpha) = 0\\ \nu_i^*(1 - \lambda_i^*) = 0 \end{gather*} \begin{lemma}\label{lemma:derivative-bounds} Let $\partial_i L(\lambda)$ denote the $i$-th derivative of $L$, for $i\in\{1,\ldots, n\}$, then: \begin{displaymath} \forall\lambda\in[0, 1]^n,\;\frac{b}{2^n} \leq \partial_i L(\lambda) \leq 1 \end{displaymath} \end{lemma} \begin{proof} Let us define: \begin{displaymath} S(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i} \quad\mathrm{and}\quad S_k \defeq I_d + \sum_{i=1}^n x_i\T{x_i} \end{displaymath} We have $\partial_i L(\lambda) = \T{x_i}S(\lambda)^{-1}x_i$. Since $S(\lambda)\geq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which is the right-hand side of the lemma. For the left-hand side, note that $S(\lambda) \leq S_n$. Hence $\partial_iL(\lambda)\geq \T{x_i}S_n^{-1}x_i$. Using the Sherman-Morrison formula, for all $k\geq 1$: \begin{displaymath} \T{x_i}S_k^{-1} x_i = \T{x_i}S_{k-1}^{-1}x_i - \frac{(\T{x_i}S_{k-1}^{-1}x_k)^2}{1+\T{x_k}S_{k-1}^{-1}x_k} \end{displaymath} By the Cauchy-Schwarz inequality: \begin{displaymath} (\T{x_i}S_{k-1}^{-1}x_k)^2 \leq \T{x_i}S_{k-1}^{-1}x_i\;\T{x_k}S_{k-1}^{-1}x_k \end{displaymath} Hence: \begin{displaymath} \T{x_i}S_k^{-1} x_i \geq \T{x_i}S_{k-1}^{-1}x_i - \T{x_i}S_{k-1}^{-1}x_i\frac{\T{x_k}S_{k-1}^{-1}x_k}{1+\T{x_k}S_{k-1}^{-1}x_k} \end{displaymath} But $\T{x_k}S_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if $0\leq a\leq 1$, so: \begin{displaymath} \T{x_i}S_{k}^{-1}x_i \geq \T{x_i}S_{k-1}^{-1}x_i - \frac{1}{2}\T{x_i}S_{k-1}^{-1}x_i\geq \frac{\T{x_i}S_{k-1}^{-1}x_i}{2} \end{displaymath} By induction: \begin{displaymath} \T{x_i}S_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n} \end{displaymath} Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side of the lemma's inequality. \end{proof} \begin{lemma}\label{lemma:proximity} We have: \begin{displaymath} L^*_c - \alpha n^2(n-1)\leq L^*_c(\alpha) \leq L^*_c \end{displaymath} In particular, $|L^*_c - L^*_c(\alpha)| \leq \alpha n^2(n-1)$. \end{lemma} \begin{proof} $\alpha\mapsto L^*_c(\alpha)$ is a decreasing function as it is the maximum value of the $L$ function over a set-decreasing domain, which gives the rightmost inequality. Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c, \alpha})$, that is: \begin{displaymath} L^*_{c}(\alpha) = \max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) \end{displaymath} Note that $\mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) = \mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*) - \alpha\T{\mathbf{1}}\mu^*$, and that for any $\lambda$ feasible for problem \eqref{eq:primal}, $\mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*) \geq L(\lambda)$. Hence, \begin{displaymath} L^*_{c}(\alpha) \geq L(\lambda) - \alpha\T{\mathbf{1}}\mu^* \end{displaymath} for any $\lambda$ feasible for \eqref{eq:primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:primal}: \begin{equation}\label{eq:local-1} L^*_{c}(\alpha) \geq L^*_c - \alpha\T{\mathbf{1}}\mu^* \end{equation} Let us denote by the $M$ the support of $\mu^*$, that is $M\defeq \{i|\mu_i^* > 0\}$, and by $\lambda^*$ a primal optimal point for $\eqref{eq:perturbed-primal}$. From the KKT conditions we see that: \begin{displaymath} M = \{i|\lambda_i^* = \alpha\} \end{displaymath} Let us first assume that, $|M|\geq 1$, then we have that $\T{c}\lambda^* = 1$, otherwise we could increase the coordinates of $\lambda^*$ in $M$, which would increase the value of the objective function and contradict the optimality of $\lambda^*$. Note also, that $|M|\leq n-1$, otherwise, since $\alpha< \frac{1}{n}$, we would have $\T{c}\lambda^*\ < 1$, which again contradicts the optimality of $\lambda^*$. Let us write: \begin{displaymath} 1 = \T{c}\lambda^* = \alpha\sum_{i\in M}c_i + \sum_{i\in \bar{M}}\lambda_i^*c_i \leq \alpha (n-1) + (n-1)\max_{i\in \bar{M}} c_i \end{displaymath} That is: \begin{equation}\label{local-2} \max_{i\in\bar{M}} c_i \geq \frac{1 - (n-1)\alpha}{n-1}> \frac{1}{n(n-1)} \end{equation} where the last inequality uses again that $\alpha<\frac{1}{n}$. From the KKT conditions, we see that for $i\in M$, $\nu_i^* = 0$ and: \begin{equation}\label{local-3} \mu_i^* = \xi^*c_i - \partial_i L(\lambda^*)\leq \xi^*c_i\leq \xi^* \end{equation} since $\partial_i L(\lambda^*)\geq 0$ and $c_i\leq 1$. Furthermore, using the KKT conditions again, we have that: \begin{equation}\label{local-4} \xi^* = \inf_{i\in \bar{M}}\frac{\partial_i L(\lambda^*)}{c_i}\leq \inf_{i\in \bar{M}} \frac{1}{c_i} = \frac{1}{\max_{i\in\bar{M}} c_i} \end{equation} where the inequality uses Lemma~\ref{lemma:derivative-bounds}. Combining \eqref{local-2}, \eqref{local-3} and \eqref{local-4}, we get that: \begin{displaymath} \sum_{i\in M}\mu_i^* \leq |M|\xi^* \leq n\xi^*\leq \frac{n}{\max_{i\in\bar{M}} c_i} \leq n^2(n-1) \end{displaymath} Finally let us write: \begin{displaymath} \T{\mathbf{1}}\mu^* = \sum_{i=1}^n \mu^*_i = \sum_{i\in M}\mu_i^* \end{displaymath} Either $|M|=0$, in which case $\T{\mathbf{1}}\mu^* = 0$, either $|M|\geq 1$, in which case $\T{\mathbf{1}}\mu^*\leq n^2(n-1)$ from the inequality above. In both cases, $\T{\mathbf{1}}\mu^* \leq n^2(n-1)$, which, in addition to \eqref{eq:local-1} proves the lemma. \end{proof} \begin{lemma}\label{lemma:monotonicity} If $c'$ = $(c_i', c_{-i})$, with $c_i'\leq c_i - \delta$, we have: \begin{displaymath} L^*_{c'}(\alpha) \geq L^*_c(\alpha) + \frac{\alpha\delta b}{2^n} \end{displaymath} \end{lemma} \begin{proof} Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c', \alpha})$. Noting that, $\mathcal{L}_{c', \alpha}(\lambda, \mu^*, \nu^*, \xi^*) \geq \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + \lambda_i\xi^*\delta$, we get similarly to Lemma~\ref{lemma:proximity}: \begin{displaymath} L^*_{c'}(\alpha) \geq L(\lambda) + \lambda_i\xi^*\delta \end{displaymath} for any $\lambda$ feasible for \eqref{eq:perturbed-primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:perturbed-primal}: \begin{displaymath} L^*_{c'}(\alpha) \geq L^*_{c}(\alpha) + \alpha\xi^*\delta \end{displaymath} since $\lambda_i^*\geq \alpha$. Using the KKT conditions for $(P_{c', \alpha})$, we can write: \begin{displaymath} \xi^* = \inf_{i:\lambda^{'*}_i>\alpha} \frac{\T{x_i}S(\lambda^{'*})^{-1}x_i}{c_i'} \end{displaymath} with $\lambda^{'*}$ optimal for $(P_{c', \alpha})$. Since $c_i'\leq 1$, using Lemma~\ref{lemma:derivative-bounds}, we get that $\xi^*\geq \frac{b}{2^n}$, which concludes the proof. \end{proof} \begin{proposition} Let $\delta\in(0,1]$. For any $\varepsilon\in(0,1]$, there exists a routine which computes an approximate solution $\tilde{L}^*_c$ to \eqref{eq:primal} such that: \begin{enumerate} \item $|\tilde{L}^*_c - L^*_c| \leq \varepsilon$ \item for all $c' = (c_i', c_{-i})$ with $c_i'\leq c_i-\delta$, $\tilde{L}^*_c \leq \tilde{L}^*_{c'}$ \item the routine's running time is $O\big(poly(n, d, \log\log\frac{1}{b\varepsilon\delta})\big)$ \end{enumerate} \end{proposition} \begin{proof} Let $\varepsilon$ in $(0, 1]$. The routine works as follows: set $\alpha\defeq \varepsilon(\delta + n^2(n-1))^{-1}$ and return an approximation $\tilde{L}^*_c$ of $L^*_c(\alpha)$ with an accuracy $\frac{1}{2^{n+1}}\alpha\delta b$ computed by a standard convex optimization algorithm. Note that this choice of $\alpha$ implies $\alpha<\frac{1}{n}$ as requested. \begin{enumerate} \item using Lemma~\ref{lemma:proximity}: \begin{displaymath} |\tilde{L}^*_c - L^*_c| \leq |\tilde{L}^*_c - L^*_c(\alpha)| + |L^*_c(\alpha) - L^*_c| \leq \alpha\delta + \alpha n^2(n-1) = \varepsilon \end{displaymath} \item let $c' = (c_i', c_{-i})$ with $c_i'\leq c_i-\delta$, then: \begin{displaymath} \tilde{L}^*_{c'} \geq L^*_{c'} - \frac{\alpha\delta b}{2^{n+1}} \geq L^*_c + \frac{\alpha\delta b}{2^{n+1}} \geq \tilde{L}^*_c \end{displaymath} where the first and inequality come from the accuracy of the approximation, and the inner inequality follows from Lemma~\ref{lemma:monotonicity}. \item the accuracy of the approximation $\tilde{L}^*_c$ is: \begin{displaymath} A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2(n-1))} \end{displaymath} \sloppy hence, the standard convex optimization algorithm runs in time $O(poly(n, d,\log\log A^{-1}))$. Note that: \begin{displaymath} \log\log A^{-1} = O\bigg(\log n\; \log\log\frac{1}{\epsilon\delta b}\bigg) \end{displaymath} which yields the wanted running time for the routine.\qedhere \end{enumerate} \end{proof} \end{document}