\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{amsmath,amsthm,amsfonts} \usepackage{comment} \newtheorem{lemma}{Lemma} \newtheorem{fact}{Fact} \newtheorem{example}{Example} \newtheorem{prop}{Proposition} \newcommand{\var}{\mathop{\mathrm{Var}}} \newcommand{\condexp}[2]{\mathop{\mathbb{E}}\left[#1|#2\right]} \newcommand{\expt}[1]{\mathop{\mathbb{E}}\left[#1\right]} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\tr}[1]{#1^*} \newcommand{\ip}[2]{\langle #1, #2 \rangle} \newcommand{\mse}{\mathop{\mathrm{MSE}}} \newcommand{\trace}{\mathop{\mathrm{tr}}} \begin{document} \section{Problem} \begin{itemize} \item database $D = (X_i)_{1\leq i\leq n}$ \item $(X_i)_{1\leq i\leq n}\in\big(\mathbf{R^d}\big)^n$ sampled in an i.i.d fashion from the probability distribution $\mu$ \end{itemize} We assume that there is a common variable $P$ which is the underlying phenomenon that we are interesting in, and all the variables in the database, are noisy realisations of this phenomenon: \begin{displaymath} X_i = P + N_i \end{displaymath} where the $N_i$ are pairwise independent and also independent from $H$. We are interested in defining the $\emph{value}$ of a subset $S$ of the database $D$. The approaches to such a definition can be classified in two main families: \begin{itemize} \item \emph{Information theoretic:} We use the entropy of $P$ as a measure of the uncertainty. Then the value of a subset $S$ is the decrease of entropy induced by revealing it: \begin{displaymath} V(S) = H(P) - H(P\,|\,S) \end{displaymath} \item \emph{Statistical:} in this case you are trying to estimate the phenomenon. The variance of the estimation is used as a measure of the uncertainty. The value of a set $S$ can be defined as the average reduction of the variance over all the points in the database once you observe $S$: \begin{displaymath} V(S) = \frac{1}{|D|}\sum_{x\in D} \sigma_x^2 - \sigma_{x|A}^2 \end{displaymath} \end{itemize} Once you have defined a notion of value, there are several problems you can address: \begin{enumerate} \item \emph{budget auctions:} the points in the database are associated with users. Each user $i$ has a cost $c_i$ for revealing his data. You are given a budget $B$ and you want to select a subset $S$ of users and a payment scheme which is truthful. The value of the subset $S$ should be as big as possible with the constraint that the payments should stay within budget. \item \emph{value sharing:} the goal is to find a value sharing method to split the whole value of a subset $S$ among its participants. \item \emph{k-best auctions:} this one is very similar to \emph{budget auctions}, but instead of having a budget constraint, the constraint is on the number of people in the subset $S$. \end{enumerate} These problems have already been studied, and optimal or near-optimal solution are already known when the value function is submodular. Fortunately, it can be shown that the information theoretic value defined above is submodular. \section{Submodularity} In this section, we will consider that we are given a \emph{universe} set $U$. A set function $f$ is a function defined on the power set of $U$, $\mathfrak{P}(U)$. A set function $f$ defined on $\mathfrak{P}(U)$ will be said \emph{increasing} if it is increasing with regards to inclusion, that is: \begin{displaymath} \forall\,S\subseteq T,\quad f(S)\leq f(T) \end{displaymath} A \emph{decreasing} function on $\mathfrak{P}(U)$ is defined similarly. A set function $f$ defined on $\mathfrak{P}(U)$ is said to be \emph{submodular} if it verifies the diminishing returns property, that is, the marginal increments when adding a point to a set, is a set decreasing function. More formally, for any point $x$ in $U$, we can define the marginal increment of $f$ regarding $x$, it is the set function defined as: \begin{displaymath} \Delta_x f(S) = f(S\cup\{x\}) - f(S) \end{displaymath} Then, $f$ is \emph{submodular} iff. for all $x$ in $U$, $\Delta_x f$ is a set decreasing function. Similarly, a \emph{supermodular} is a function whose marginal increments are set increasing functions. \begin{prop} Let $R:\mathbf{R}\rightarrow \mathbf{R}$ be a decreasing concave function and $f:\mathfrak{P}(U)\rightarrow\mathbf{R}$ be a decreasing submodular function, then the composed function $R\circ f$ is increasing and supermodular. \end{prop} \begin{proof} The increasingness of $R\circ f$ follows immediately from the decreasingness of $R$ and $f$. For the supermodularity, let $S$ and $T$ be two sets such that $S\subseteq T$. By decreasingness of $f$, we have: \begin{displaymath} \forall\,V,\quad f(T)\leq f(S)\quad\mathrm{and}\quad f(T\cup V)\leq f(S\cup V) \end{displaymath} Thus, by concavity of $R$: \begin{displaymath}\label{eq:base} \forall\,V,\quad\frac{R\big(f(S)\big)-R\big(f(S\cup V)\big)}{f(S)-f(S\cup V)} \leq\frac{R\big(f(T)\big)-R\big(f(T\cup V)\big)}{f(T)-f(T\cup V)} \end{displaymath} $f$ is decreasing, so multiplying this last inequality by $f(S)-f(S\cup V)$ and $f(T)-f(T\cup V)$ yields: \begin{multline} \forall V,\quad\Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(T)-f(T\cup V)\big)\\ \leq \Big(R\big(f(T)\big)-R\big(f(T\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big) \end{multline} $f$ is submodular, so: \begin{displaymath} f(T\cup V)-f(T)\leq f(S\cup V) - f(S) \end{displaymath} $R\circ f$ is increasing, so: \begin{displaymath} R\big(f(S)\big)-R\big(f(S\cup V)\big)\leq 0 \end{displaymath} By combining the two previous inequalities, we get: \begin{multline*} \forall V,\quad\Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big)\\ \leq \Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(T)-f(T\cup V)\big) \end{multline*} Injecting this last inequality into \eqref{eq:base} gives: \begin{multline*} \forall V,\quad\Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big)\\ \leq \Big(R\big(f(T)\big)-R\big(f(T\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big) \end{multline*} Dividing left and right by $f(S)-f(S\cup V)$ yields: \begin{displaymath} \forall V,\quad R\big(f(S)\big)-R\big(f(S\cup V)\big) \leq R\big(f(T)\big)-R\big(f(T\cup V)\big) \end{displaymath} which is exactly the supermodularity of $R\circ f$. \end{proof} \end{document}