\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{amsmath,amsthm,amsfonts} \usepackage{comment} \newtheorem{lemma}{Lemma} \newtheorem{fact}{Fact} \newtheorem{example}{Example} \newcommand{\var}{\mathop{\mathrm{Var}}} \newcommand{\condexp}[2]{\mathop{\mathbb{E}}\left[#1|#2\right]} \newcommand{\expt}[1]{\mathop{\mathbb{E}}\left[#1\right]} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\tr}[1]{#1^*} \newcommand{\ip}[2]{\langle #1, #2 \rangle} \newcommand{\mse}{\mathop{\mathrm{MSE}}} \newcommand{\trace}{\mathop{\mathrm{tr}}} \begin{document} \section{Problem} \begin{itemize} \item $D = (x_i)_{1\leq i\leq n}$ \item $(x_i)_{1\leq i\leq n}$ sampled in an i.i.d fashion from $\mu$ \end{itemize} There is a function $F$ and you are interested in estimating the value $F(\mu)$. We assume that you have an estimation scheme $\tilde{F}$, which given a set of data points $S$ returns an estimation $\tilde{F}(S)$ which is optimal in some sense. Your also given a revenue function $R$ which is a decreasing function of the estimation error. Then the value $V$ of the databse is defined by: \begin{displaymath} V(D) = \max_{S\subseteq D} R\left(| F(\mu) - \tilde{F} |\right) \end{displaymath} \begin{example} \end{example} \begin{fact} \begin{itemize} \item If $R$ is decreasing then $V$ is increasing in the size of $D$. \item If $R$ is concave then $V$ is supermodular. \end{itemize} \end{fact} \begin{proof} \end{proof} \end{document}