\subsection{Experimental Design} The theory of experimental design \cite{pukelsheim2006optimal,atkinson2007optimum} studies how an experimenter should select the parameters of a set of experiments she is about to conduct. In general, the optimality of a particular design depends on the purpose of the experiment, \emph{i.e.}, the quantity the experimenter is trying to learn or the hypothesis she is trying to validate. Due to their ubiquity in statistical analysis, a large literature on the subject focuses on learning \emph{linear models}, whereby the experimenter wishes to fit a linear map to the data she has collected. More precisely, putting cost considerations aside, suppose that an experimenter wishes to conduct $k$ among $n$ possible experiments. Each experiment $i\in\mathcal{N}\defeq \{1,\ldots,n\}$ is associated with a set of parameters (or features) $x_i\in \reals^d$, normalized so that $\|x_i\|_2\leq 1$. Denote by $S\subseteq \mathcal{N}$, where $|S|=k$, the set of experiments selected; upon its execution, experiment $i\in S$ reveals an output variable (the ``measurement'') $y_i$, related to the experiment features $x_i$ through a linear function, \emph{i.e.}, \begin{align} y_i = \T{\beta} x_i + \varepsilon_i,\quad\forall i\in\mathcal{N},\label{model} \end{align} where $\beta$ a vector in $\reals^d$, commonly referred to as the \emph{model}, and $\varepsilon_i$ (the \emph{measurement noise}) are independent, normally distributed random variables with zero mean and variance $\sigma^2$. The purpose of these experiments is to allow the experimenter to estimate the model $\beta$. In particular, under \eqref{model}, the maximum likelihood estimator of $\beta$ is the \emph{least squares} estimator: for $X_S=[x_i]_{i\in S}\in \reals^{|S|\times d}$ the matrix of experiment features and $y_S=[y_i]_{i\in S}\in\reals^{|S|}$ the observed measurements, \begin{align} \hat{\beta} &=\max_{\beta\in\reals^d}\prob(y_S;\beta) =\argmin_{\beta\in\reals^d } \sum_{i\in S}(\T{\beta}x_i-y_i)^2 \nonumber\\ & = (\T{X_S}X_S)^{-1}X_S^Ty_S\label{leastsquares}\end{align} %The estimator $\hat{\beta}$ is unbiased, \emph{i.e.}, $\expt{\hat{\beta}} = \beta$ (where the expectation is over the noise variables $\varepsilon_i$). Furthermore, $\hat{\beta}$ is a multidimensional normal random variable with mean $\beta$ and covariance matrix $(X_S\T{X_S})^{-1}$. Note that the estimator $\hat{\beta}$ is a linear map of $y_S$; as $y_S$ is a multidimensional normal r.v., so is $\hat{\beta}$ (the randomness coming from the noise terms $\varepsilon_i$). In particular, $\hat{\beta}$ has mean $\beta$ (\emph{i.e.}, it is an \emph{unbiased estimator}) and covariance $(\T{X_S}X_S)^{-1}$. Let $V:2^\mathcal{N}\to\reals$ be a \emph{value function}, quantifying how informative a set of experiments $S$ is in estimating $\beta$. The standard optimal experimental design problem amounts to finding a set $S$ that maximizes $V(S)$ subject to the constraint $|S|\leq k$. A variety of different value functions are used in experimental design~\cite{pukelsheim2006optimal}; almost all make use of the covariance $(\T{X_S}X_S)^{-1}$ of the estimator $\hat{\beta}$. A value function preferred because of its relationship to entropy is the \emph{$D$-optimality criterion}: %which yields the following optimization problem \begin{align} V(S) &= \frac{1}{2}\log\det \T{X_S}X_S \label{dcrit} %\\ \end{align} As $\hat{\beta}$ is a multidimensional normal random variable, the $D$-optimality criterion is equal (up to a constant) to the negative of the entropy of $\hat{\beta}$. Hence, selecting a set of experiments $S$ that maximizes $V(S)$ is equivalent to finding the set of experiments that minimizes the uncertainty on $\beta$, as captured by the entropy of its estimator. %As discussed in the next section, in this paper, we work with a modified measure of information function, namely %\begin{align} %V(S) & = \frac{1}{2} \log\det \left(I + \T{X_S}X_S\right) %\end{align} %There are several reasons Value function \eqref{dcrit} has several appealing properties. To begin with, it is a submodular set function (see Lemma~\ref{...} and Thm.~\ref{...}). In addition, the maximization of convex relaxations of this function is a well-studied problem \cite{boyd}. Note that \eqref{dcrit} is undefined when $\mathrm{rank}(\T{X_S}X_S)