\documentclass{IEEEtran} %\usepackage{mathptmx} \usepackage[utf8]{inputenc} \usepackage{amsmath,amsthm,amsfonts} \usepackage{algorithm} \usepackage{algpseudocode} \newtheorem{lemma}{Lemma} \newtheorem{fact}{Fact} \newtheorem{example}{Example} \newtheorem{prop}{Proposition} \newcommand{\var}{\mathop{\mathrm{Var}}} \newcommand{\condexp}[2]{\mathop{\mathbb{E}}\left[#1|#2\right]} \newcommand{\expt}[1]{\mathop{\mathbb{E}}\left[#1\right]} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\tr}[1]{#1^*} \newcommand{\ip}[2]{\langle #1, #2 \rangle} \newcommand{\mse}{\mathop{\mathrm{MSE}}} \DeclareMathOperator{\trace}{tr} \DeclareMathOperator*{\argmax}{arg\,max} \begin{document} \section{Budget feasible mechanism} \subsection{Data model} \begin{itemize} \item set of $n$ users $\mathcal{N} = \{1,\ldots, n\}$ \item each user has a public vector of features $x_i\in\mathbf{R}^d$ and some undisclosed variable $y_i\in\mathbf{R}$ \item \textbf{Ridge regression model:} \begin{itemize} \item $y_i = \beta^*x_i + \varepsilon_i$ \item $\varepsilon_i \sim \mathcal{N}(0,\sigma^2)$, $(\varepsilon_i)_{i\in \mathcal{N}}$ are mutually independent. \item prior knowledge of $\beta$: $\beta\sim\mathcal{N}(0,\kappa I_d)$ \end{itemize} \end{itemize} \subsection{Economics} \begin{itemize} \item Value function: \begin{align*} \forall S\subset\mathcal{N},\; V(S) & = \frac{1}{2}\log\det\left(I_d + \frac{\kappa}{\sigma^2}\sum_{i\in S} x_ix_i^*\right)\\ & = \frac{1}{2}\log\det X(S) \end{align*} \item each user $i$ has a cost $c_i$ \item the auctioneer has a budget constraint $B$ \item optimisation problem: \begin{displaymath} OPT(V,\mathcal{N}, B) = \max_{S\subset\mathcal{N}} \left\{ V(S)\,|\, \sum_{i\in S}c_i\leq B\right\} \end{displaymath} \end{itemize} \subsection{Relaxations of the value function} We say that $R_\mathcal{N}:[0,1]^n\rightarrow\mathbf{R}$ is a relaxation of the value function $V$ over $\mathcal{N}$ if it coincides with $V$ at binary points. Formally, for any $S\subset\mathcal{N}$, let $\mathbf{1}_S$ denote the indicator vector of $S$. $R_\mathcal{N}$ is a relaxation of $V$ over $\mathcal{N}$ iff: \begin{displaymath} \forall S\subset\mathcal{N},\; R_\mathcal{N}(\mathbf{1}_S) = V(S) \end{displaymath} We can extend the optimisation problem defined above to a relaxation by extending the cost function: \begin{displaymath} \forall \lambda\in[0,1]^n,\; c(\lambda) = \sum_{i\in\mathcal{N}}\lambda_ic_i \end{displaymath} The optimisation problem becomes: \begin{displaymath} OPT(R_\mathcal{N}, B) = \max_{\lambda\in[0,1]^n}\left\{R_\mathcal{N}(\lambda)\,|\, c(\lambda)\leq B\right\} \end{displaymath} The relaxations we will consider here rely on defining a probability distribution over subsets of $\mathcal{N}$. Let $\lambda\in[0,1]^n$, let us define: \begin{displaymath} P_\mathcal{N}(S,\lambda) = \prod_{i\in S}\lambda_i \prod_{i\in\mathcal{N}\setminus S}(1-\lambda_i) \end{displaymath} $P_{\mathcal{N}}(S,\lambda)$ is the probability of picking the set $S$ if we select a subset of $\mathcal{N}$ at random by deciding independently for each point to include it in the set with probability $\lambda_i$ (and to exclude it with probability $1-\lambda_i$). We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \begin{itemize} \item the \emph{multi-linear extension} of $V$: \begin{align*} F_\mathcal{N}(\lambda) & = \mathbb{E}_{S\sim P_\mathcal{N}(S,\lambda)}\big[\log\det X(S)\big]\\ & = \sum_{S\subset\mathcal{N}} P_\mathcal{N}(S,\lambda) V(S)\\ & = \sum_{S\subset\mathcal{N}} P_{\mathcal{N}}(S,\lambda) \log\det X(S)\\ \end{align*} \item the \emph{concave relaxation} of $V$: \begin{align*} L_{\mathcal{N}}(\lambda) & = \log\det \mathbb{E}_{S\sim P_\mathcal{N}(S,\lambda)}\big[X(S)\big]\\ & = \log\det\left(\sum_{S\subset N} P_\mathcal{N}(S,\lambda)X(S)\right)\\ & = \log\det\left(I_d + \frac{\kappa}{\sigma^2}\sum_{i\in\mathcal{N}} \lambda_ix_ix_i^*\right) \end{align*} \end{itemize} \begin{lemma} The \emph{concave relaxation} $L_\mathcal{N}$ is concave\footnote{Hence this relaxation is well-named!}. \end{lemma} \begin{proof} This follows almost immediately from the concavity of the $\log\det$ function over symmetric positive semi-definite matrices. More precisely, if $A$ and $B$ are two symmetric positive semi-definite matrices, then: \begin{multline*} \forall\alpha\in [0, 1],\; \log\det\big(\alpha A + (1-\alpha) B\big)\\ \geq \alpha\log\det A + (1-\alpha)\log\det B \end{multline*} \end{proof} \begin{lemma}[Rounding] For any feasible $\lambda\in[0,1]^n$, there exists a feasible $\bar{\lambda}\in[0,1]^n$ such that at most one of its component is fractional, that is, lies in $(0,1)$ and: \begin{displaymath} F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda}) \end{displaymath} \end{lemma} \begin{proof} We give a rounding procedure which given a feasible $\lambda$ with at least two fractional components, returns some $\lambda'$ with one less fractional component, feasible such that: \begin{displaymath} F(\lambda) \leq F(\lambda') \end{displaymath} Applying this procedure recursively yields the lemma's result. Let us consider such a feasible $\lambda$. Let $i$ and $j$ be two fractional components of $\lambda$ and let us define the following function: \begin{displaymath} F_\lambda(\varepsilon) = F(\lambda_\varepsilon) \quad\textrm{where} \quad \lambda_\varepsilon = \lambda + \varepsilon\left(e_i-\frac{c_i}{c_j}e_j\right) \end{displaymath} It is easy to see that if $\lambda$ is feasible, then: \begin{multline}\label{eq:convex-interval} \forall\varepsilon\in\Big[\max\Big(-\lambda_i,(\lambda_j-1)\frac{c_j}{c_i}\Big), \min\Big(1-\lambda_i, \lambda_j \frac{c_j}{c_i}\Big)\Big],\;\\ \lambda_\varepsilon\;\;\textrm{is feasible} \end{multline} Furthermore, the function $F_\lambda$ is convex, indeed: \begin{align*} F_\lambda(\varepsilon) & = \mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}(S',\lambda)}\Big[ (\lambda_i+\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i,j\})\\ & + (\lambda_i+\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i\})\\ & + (1-\lambda_i-\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{j\})\\ & + (1-\lambda_i-\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S')\Big]\\ \end{align*} Thus, $F_\lambda$ is a degree 2 polynomial whose dominant coefficient is: \begin{multline*} \frac{c_i}{c_j}\mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}(S',\lambda)}\Big[ V(S'\cup\{i\})+f(S'\cup\{i\})\\ -V(S'\cup\{i,j\})-f(S')\Big] \end{multline*} which is positive by submodularity of $V$. Hence, the maximum of $F_\lambda$ over the interval given in \eqref{eq:convex-interval} is attained at one of its limit, at which either the $i$-th or $j$-th component of $\lambda_\varepsilon$ becomes integral. \end{proof} \begin{lemma} There exists $C>0$ such that: \begin{displaymath} \forall\lambda\in[0,1]^n,\; C\,L_\mathcal{N}(\lambda)\leq F_\mathcal{N}(\lambda)\leq L_{\mathcal{N}}(\lambda) \end{displaymath} \end{lemma} \begin{lemma} \begin{displaymath} OPT(L_\mathcal{N}, B) \leq \frac{1}{C}OPT(V,\mathcal{N},B) + \max_{i\in\mathcal{N}}V(i) \end{displaymath} \end{lemma} \begin{algorithm} \caption{Budget feasible mechanism for ridge regression} \begin{algorithmic}[1] \State $i^* \gets \argmax_{j\in\mathcal{N}}V(j)$ \State $x^* \gets \argmax_{x\in[0,1]^n} \{L_{\mathcal{N}\setminus\{i^*\}}(x) \,|\, c(x)\leq\frac{B}{2}\}$ \Statex \If{$L(x^*) < CV(\{i^*\})$} \State \textbf{return} $\{i^*\}$ \Else \State $i \gets \argmax_{1\leq j\leq n}\frac{V(\{j\})}{c_j}$ \State $S \gets \emptyset$ \While{$c_i\leq \frac{B}{2}\frac{V(S\cup\{i\})-V(S)}{V(S\cup\{i\})}$} \State $S \gets S\cup\{i\}$ \State $i \gets \argmax_{j\in\{1,\ldots,n\}\setminus S} \frac{V(S\cup\{j\})-V(S)}{c_j}$ \EndWhile \State \textbf{return} $S$ \EndIf \end{algorithmic} \end{algorithm} \end{document}