\documentclass[10pt]{beamer} \usepackage[utf8x]{inputenc} \usepackage{amsmath,bbm,verbatim} \usepackage{algpseudocode,algorithm,bbding} \usepackage{graphicx} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\argmin}{arg\,min} \usetheme{Boadilla} \newcommand{\E}{{\tt E}} \title[Harvard EconCS Seminar]{Budget Feasible Mechanism\\for Experimental Design} \author[Thibaut Horel]{Thibaut Horel, Stratis Ioannidis, and S. Muthukrishnan} %\setbeamercovered{transparent} \setbeamertemplate{navigation symbols}{} \newcommand{\ie}{\emph{i.e.}} \newcommand{\eg}{\emph{e.g.}} \newcommand{\etc}{\emph{etc.}} \newcommand{\etal}{\emph{et al.}} \newcommand{\reals}{\ensuremath{\mathbb{R}}} \begin{document} \maketitle \section{Motivation} \begin{frame}{Motivation} \begin{center} \includegraphics<1>[scale=0.4]{stg-8.pdf} \includegraphics<2>[scale=0.4]{stg-7.pdf} \includegraphics<3>[scale=0.4]{stg-6.pdf} \includegraphics<4>[scale=0.4]{stg-5.pdf} \includegraphics<5>[scale=0.4]{stg-4.pdf} \includegraphics<6>[scale=0.4]{stg-3.pdf} \includegraphics<7>[scale=0.4]{stg-2.pdf} \includegraphics<8>[scale=0.4]{stg-1.pdf} \end{center} \end{frame} \begin{frame}{Application and Challenges} \begin{itemize} \item<1-> Applications \begin{itemize} \item Medicine/Sociology \item Online surveys \item Data markets \end{itemize} \vspace*{1cm} \item<2-> Challenges \begin{itemize} \item Which users are \alert{the most valuable}? \item What if users are \alert{strategic}? \end{itemize} \end{itemize} \end{frame} \begin{frame}{Answers} \begin{itemize} \item Which users are \alert{the most valuable}? \pause \begin{itemize} \item Experimental Design \end{itemize} \pause \item Experimental design with \alert{strategic agents}?\pause \begin{itemize} \item Budget Feasible Mechanisms [Singer, 2010] \end{itemize} \end{itemize} \pause \vspace*{1cm} For Linear Regression: \begin{itemize} \item We present a deterministic, poly-time, truthful, budget feasible, 12.9-aproximate mechanism. \item Lower bound of 2. \end{itemize} \end{frame} \section{Experimental design} \begin{frame}{Outline} \tableofcontents \end{frame} \begin{frame}{Outline} \tableofcontents[currentsection] \end{frame} \begin{frame}{Problem} \begin{center} \includegraphics<1>[scale=0.4]{st2.pdf} \includegraphics<2>[scale=0.4]{st3.pdf} \includegraphics<3>[scale=0.4]{st4.pdf} \includegraphics<4>[scale=0.4]{st5.pdf} \includegraphics<5>[scale=0.4]{st6.pdf} \includegraphics<6>[scale=0.4]{st6a.pdf} \includegraphics<7>[scale=0.4]{st6b.pdf} \includegraphics<8>[scale=0.4]{st6c.pdf} \includegraphics<9>[scale=0.4]{st6d.pdf} \includegraphics<10->[scale=0.4]{st6e.pdf} \end{center} \vspace*{-2em} \begin{center} \begin{overprint} \onslide<1>\begin{center}$N$ ``experiment subjects'', $[N]\equiv \{1,\ldots,N\}$ \end{center} \onslide<2> \begin{center} $x_i\in \reals^d$: public features (\eg, age, gender, height, \etc) \end{center} \onslide<3> \begin{center} $y_i\in \reals$: private data (\eg, survey answer, medical test outcome, movie rating\ldots) \end{center} \onslide<4> \textbf{Gaussian Linear Model.} There exists $\beta\in \reals^d$ s.t.\vspace*{-1em} \begin{displaymath} y_i = \beta^T x_i + \varepsilon_i,\quad \varepsilon_i\sim\mathcal{N}(0,\sigma^2), \quad i\in [N] \end{displaymath} \onslide<5> \begin{center} Experimenter {\tt E} wishes to learn $\beta$. \end{center} \onslide<6> \begin{center} Each subject $i\in [N]$ has a cost $c_i\in \reals_+$ \end{center} \onslide<7> \begin{center} \E\ has a budget $B$. \end{center} \onslide<8-9> \begin{center} \E\ pays subjects\visible<9>{; $y_i$ is revealed upon payment.} \end{center} \onslide<10> \begin{center} {\tt E} estimates ${\beta}$ through \emph{ridge regression}. \end{center} \onslide<11> \begin{center} Goal: Determine who to pay how much so that $\hat{\beta}$ is as accurate as possible. \end{center} \end{overprint} \end{center} \end{frame} \begin{frame}{Which Users Are Informative?} Let $S\subseteq [N]$ be the set of selected users. \pause \E\ has a \emph{prior} on $\beta$: $$\beta \sim \mathcal{N}(0,\sigma^2 R^{-1}). $$ \pause MAP estimation after observing private values: \begin{align*} \hat{\beta} = \argmax_{\beta\in\reals^d} \mathbf{P}(\beta\mid y_i, i\in S) \pause =\argmin_{\beta\in\reals^d} \big(\sum_{i\in S} (y_i - {\beta}^Tx_i)^2 + \beta^TR\beta\big) \end{align*} \pause Variance: \begin{displaymath} \mathrm{Var}\, \hat{\beta} = \Big(R+\sum_{i\in S}x_ix_i^T\Big)^{-1} \end{displaymath} \pause Minimizing variance: which scalarization?\pause{} \alert{D}eterminant (\alert{D}-optimal design) \begin{displaymath} \det\Big(R+\sum_{i\in S}x_i x_i^T\Big)^{-1} \end{displaymath} \end{frame} \begin{frame}{Which Users Are Informative? (contd.)} Let $S\subset [N]$ be the set of selected users. \E\ has a \emph{prior} on $\beta$: $$\beta \sim \mathcal{N}(0,\sigma^2 R^{-1}). $$ \pause Information Gain: reduction of uncertainty on $\beta$ \begin{align*} I(\beta;S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\ \pause & = \frac{1}{2}\log\det \Big(R+\sum_{i\in S}x_ix_i^T\Big)-\frac{1}{2}\log\det R \end{align*} \pause \begin{alertblock}{} \begin{center} Maximizing information = Minimizing variance \end{center} \end{alertblock} \end{frame} \begin{frame}{Value function} \begin{align*} V(S)=\log\det\Big(R+\sum_{i\in S}x_ix_i^T\Big) \end{align*} \pause Marginal contribution of a user: \begin{align*} &V(S\cup\{i\})-V(S) = \log(1+x_i^TA_S^{-1}x_i),\\ &\text{where } A_S = R + \sum_{i\in S}x_ix_i^T \end{align*} \pause \begin{itemize} \item Increase is greatest when $x_i$ \alert{spans a new direction} \pause \item Adding an experiment \alert{always helps} \pause \item $V$ is \alert{submodular}: $$V(S\cup\{i\})-V(S) \geq V(S'\cup\{i\})-V(S'),\quad \text{ for }S\subseteq S'. $$ \end{itemize} \end{frame} \begin{frame}{Experimental Design} \begin{block}{\textsc{Experimental Design Problem (EDP)} } \vspace*{-0.4cm} \begin{align*} \text{Maximize}\qquad &V(S) = \log \det (\alert<2>{I}+\sum_{i\in S}x_ix_i^T) \\ \text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B \end{align*} \end{block} \pause \begin{itemize} \item $R=I$: homotropic prior \pause \item EDP is NP-hard \pause \item $V$ is submodular, monotone, non-negative, and $V(\emptyset)=0$ \pause \item $\frac{e}{e-1}$-approximable (Sviridenko 2004, Krause and Guestrin 2005) \end{itemize} \end{frame} \begin{frame}{Constant-approximation algorithm} \begin{block}{Budgeted Submodular Maximization} \begin{itemize} \item Let $i^* = \arg\max_i V(\{i\})$ \item Compute $S_G$ greedily: \begin{itemize} \item repeatedly add element with \emph{highest marginal-value-per-cost}: \begin{align*} i = \argmax_{j\in[N]\setminus S}\frac{V(S\cup\{i\}) - V(S)}{c_i} \end{align*} \item stop when the budget is exhausted \end{itemize} \item Return: \begin{itemize} \item $i^*$ if $V(\{i^*\})>V(S_G)$ \item $S_G$ otherwise \end{itemize} \end{itemize} \end{block} \vspace*{2em} \pause This algorithm is: \begin{itemize} \item poly-time, \pause \item $\frac{5e}{e-1}$-approximate. \end{itemize} \end{frame} \begin{frame}{Summary} \begin{block}{\textsc{Experimental Design Problem (EDP)} } \vspace*{-0.4cm} \begin{align*} \text{Maximize}\qquad &V(S) = \log \det (I+\sum_{i\in S}x_ix_i^T) \\ \text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B \end{align*} \end{block} \vspace{1cm} \pause Simple $\frac{2e}{e-1}$-approximate algorithm. \end{frame} \section{Experimental design with strategic users} \begin{frame}{Outline} \tableofcontents[currentsection] \end{frame} \begin{frame}{Strategic users} \begin{center} \includegraphics<1->[scale=0.3]{st10c.pdf} \end{center} \begin{itemize} \visible<2-3>{\item Subjects are \alert{strategic} and may lie about costs $c_i$.} \visible<3>{\item Subjects \alert{do not lie} about $y_i$ (tamper-proof experiments).} \visible<4-5>{\item Goal: estimate $\beta$ accurately.} \visible<5>{\item Adapt selection algorithm and payments.} \end{itemize} \end{frame} \begin{frame}{Budget Feasible Mechanism Design [Singer 2010]} Let $S\subset [N]$ be the selected users, and $c=[c_i]_{i\in [N]}$ be the reported costs. \\\bigskip \visible<2->{Let $V(S)\in\reals_+$ denote the \alert{value} of the experiments.} \visible<3->{$$\text{High }V(S) \Leftrightarrow \text{ estimate }\hat{\beta}(S) \text{ is good}$$} \visible<4->{ \begin{block}{Reverse Auction Mechanism} A mechanism $\mathcal{M}(c)=(S(c),p(c))$ comprises \begin{itemize} \item an \alert{allocation function} $S:\reals_+^N\to 2^{[N]}$, and \item a \alert{payment function} $p:\reals_+^N\to \reals_+^N$. \end{itemize} \end{block} } \end{frame} \begin{frame}{Budget Feasible Mechanism Design [Singer 2010] } We seek mechanisms $\mathcal{M}=(S,p)$ that are: \pause \vspace{0.3cm} \begin{itemize} \item Normalized: $p_i=0$ if $i\notin S$. \vspace{0.2cm} \pause \item Individually Rational: $p_i\geq c_i,\;i\in S$ \vspace{0.2cm} \pause \item Truthful \vspace{0.2cm} \pause \item budget feasible: $\sum_{i\in S} p_i \leq B$ \vspace{0.2cm} \end{itemize} \pause \vspace{0.3cm} In addition, $\mathcal{M}$ must be: \vspace{0.3cm} \pause \begin{itemize} \item computationally efficient: polynomial time \pause \vspace{0.2cm} \item approximation: $OPT \leq \alpha V(S)$ with: \begin{displaymath} OPT = \max_{S\subset \mathcal{A}} \left\{V(S)\mid \sum_{i\in S}c_i\leq B\right\} \end{displaymath} \end{itemize} \end{frame} \begin{frame}{Strategic Subjects} When $V$ is submodular: % \vspace{1cm} \pause \begin{itemize} \item \alert{Randomized}, poly-time, universally truthful mechanism, approximation ratio: $7.91$ [Singer 2010, Chen \emph{et al.}, 2011] \vspace{0.5cm} \pause \item Deterministic, \alert{exponential time}, truthful mechanism, approximation ratio: $8.34$ [Singer 2010, Chen \emph{et al.}, 2011] \vspace{0.5cm} \pause \item \alert{Deterministic, poly-time}, truthful mechanisms for specific submodular functions $V$ : \vspace{0.3cm} \begin{itemize} \item \textsc{Knapsack}: $2+\sqrt{2}$ [Singer 2010, Chen \emph{et al.}, 2011] \vspace{0.3cm} \item \textsc{Matching}: 7.37 [Singer, 2010] \vspace{0.3cm} \item \textsc{Coverage}: 31 [Singer, 2012] \vspace{0.3cm} \end{itemize} \end{itemize} \end{frame} \section{Main Results} \begin{frame}{Outline} \tableofcontents[currentsection] \end{frame} \begin{frame}{Our Main Results} \begin{theorem}<2-> There exists a deterministic, budget feasible, individually rational and truthful mechanism for EDP which runs in polynomial time. Its approximation ratio is: \begin{displaymath} \frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)} \simeq 12.98 \end{displaymath} \end{theorem} \begin{theorem}<3-> There is no 2-approximate, budget feasible, individually rational and truthful mechanism for EDP. \end{theorem} \end{frame} \begin{frame}{Myerson's Theorem} \begin{theorem}[Myerson 1981] A normalized mechanism $\mathcal{M} = (S,p)$ for a single parameter auction is truthful iff: \begin{enumerate} \item<2-> $S$ is \alert{monotone}, \emph{i.e.},%\\ for any agent $i$ and $c_i' \leq c_i$, for any fixed costs $c_{-i}$ of agents in $[N]\setminus\{i\}$, $$\text{for all}~c_i' \leq c_i,\quad i\in S(c_i, c_{-i})\text{ implies }i\in S(c_i', c_{-i}),$$ and \item<3-> subjects are paid \alert{threshold payments}, \emph{i.e.}, $$\text{for all }i\in S(c), \qquad p_i(c)=\inf\{c_i': i\in S(c_i', c_{-i})\}.$$ \end{enumerate} \end{theorem} \uncover<4->{Focus on \alert{monotone} mechanisms.} \end{frame} \begin{frame}{Can we use submodular maximization?} \begin{block}{Allocation rule candidate} \begin{itemize} \item Compute $i^* = \arg\max_i V(\{i\})$ \item Compute $S_G$ greedily: \begin{itemize} \item repeatedly add element with \emph{highest marginal-value-per-cost}: \begin{align*} i = \argmax_{j\in[N]\setminus S}\frac{V(S\cup\{i\}) - V(S)}{c_i}\label{greedy} \end{align*} \item stop when the budget is exhausted \end{itemize} \item Return: \begin{itemize} \item $i^*$ if $V(\{i^*\})>V(S_G)$ \item $S_G$ otherwise \end{itemize} \end{itemize} \end{block} \vspace*{2em} \pause Two problems: \begin{itemize} \item $\max$ breaks monotonicity \pause \item threshold payments exceed budget \end{itemize} \end{frame} \begin{frame}{Randomized Mechanism for Submodular $V$} \begin{block}{Allocation rule} \begin{itemize} \item Compute $i^* = \arg\max_i V(\{i\})$ \item Compute $S_G$ greedily: \begin{itemize} \item repeatedly add element with \emph{highest marginal-value-per-cost}: \begin{align*} i = \argmax_{j\in[N]\setminus S}\frac{V(S\cup\{i\}) - V(S)}{c_i}\label{greedy} \end{align*} \item \alt<1>{stop when the budget is exhausted}{\alert<2>{stop when $c_k\leq\frac{B}{2}\frac{V(S_G\cup\{i\}) - V(S_G)}{V(S_G\cup\{i\})}$}} \end{itemize} \item Return: \begin{itemize} \alt<1-2>{ \item $i^*$ if $V(\{i^*\})>V(S_G)$ \item $S_G$ otherwise}{ \item \alert<3>{Select at random between $i^*$ and $S_G$}} \end{itemize} \end{itemize} \end{block} \vspace{0.5cm} \begin{overprint} \onslide<4> [Singer 2010] Along with threshold payments, this mechanism is: \begin{itemize} \item poly-time, \item universally truthful, \item budget-feasible \item 7.91-approximate [Chen \etal\ 2011]. \end{itemize} \onslide<5-> \vspace{0.5cm} \alert{Problem:} $OPT\leq 7.91 \cdot \alert{\mathbb{E}[V(S)]}$\ldots \end{overprint} \end{frame} \begin{frame}{Deterministic Mechanism for Submodular $V$} \alert{Idea:} Use a proxy to compute the maximum \begin{block}{Allocation rule} \begin{itemize} \item Compute $i^* = \arg\max_i V(\{i\})$ \item Compute $S_G$ greedily \item Return: \begin{itemize} \item $i^*$ if $V(\{i^*\}) \geq \alt<1>{V(S_G)}{\alert<2>{OPT_{-i^*}}}$ \item $S_G$ otherwise \end{itemize} \end{itemize} \end{block} \vspace{0.5cm} \uncover<3->{ [Singer 2010] Along with threshold payments, this mechanism is: \begin{itemize} \item truthful, \item budget-feasible \item 8.34-approximate [Chen \etal\ 2011]. \end{itemize} } \uncover<4-> { \vspace{0.5cm} \alert{Problem:} $OPT_{-i^*}$ is NP-hard to compute\ldots } \end{frame} \begin{frame}{Blueprint for Deterministic, Poly-time Algorithm} Azar and Gamzu 2008, Singer 2010, Chen \etal\ 2011: \begin{block}{Allocation rule} \begin{itemize} \item Find $i^* = \arg\max_i V(\{i\})$ \item Compute $S_G$ greedily \item Return: \begin{itemize} \item $\{i^*\}$ if $V(\{i^*\}) \geq \alert{L^*}$ \item $S_G$ otherwise \end{itemize} \end{itemize} \end{block} \vspace{0.5cm} \begin{columns}[c] \begin{column}{0.53\textwidth} Replace $OPT$ with a \alert{relaxation $L^*$}:\pause \begin{itemize} \item computable in polynomial time \pause \item close to $OPT_{-i^*}$ \pause \item monotone in costs $c$ \end{itemize} \end{column} \pause \begin{column}{0.45\textwidth} \begin{itemize} \item \textsc{Knapsack} (Chen \etal, 2011) \item \textsc{Coverage} (Singer, 2012) \end{itemize} \end{column} \end{columns} \end{frame} \begin{frame}{Which relaxation?} \alt<1>{\begin{block}{Submodular Maximization} \vspace*{-0.4cm} \begin{align*} \text{Maximize}\qquad &V(S) \\ \text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B \end{align*} \end{block} } { \begin{block}{Multilinear Relaxation} \vspace*{-0.6cm} \begin{align*} \text{Maximize}\qquad &\alert<2>{F(\lambda)=\mathbb{E}_{S\sim\lambda}[V(S)]}\\ \text{subj. to}\qquad &\textstyle\sum_{i\in [N]}\lambda_i c_i\leq B,\\& \lambda_i\in[0,1], i\in [N] \end{align*} \vspace*{-0.6cm} \end{block} } \medskip \pause For $\lambda^*$ the optimal solution: \begin{itemize} \item $V(S) = F(\lambda)\text{ for }\lambda_i=\mathbbm{1}_{i\in S}\quad\visible<3->{\Rightarrow\quad OPT \leq F(\lambda^*).}$ \pause \item $F(\lambda^*)$ is monotone in $c$ \pause \item Pipage rounding [Ageev and Sviridenko]: \begin{displaymath}F(\lambda^*) \leq OPT + V(i^*)\end{displaymath} \end{itemize} \vspace{1cm} \pause Good relaxation candidate…\pause{} if it can be computed in poly-time. \end{frame} \begin{frame}{A relaxation for \textsc{EDP}} \alt<1>{ \begin{block}{\textsc{EDP} } \vspace*{-0.4cm} \begin{align*} \text{Maximize}\qquad &V(S) = \log \det\big(I+\sum_{i\in S}x_ix_i^T\big) \\ \text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B \end{align*} \end{block} } { \begin{block}{Convex Relaxation} \vspace*{-0.4cm} \begin{align*} \text{Maximize}\qquad &\alert<2>{L(\lambda)} = \log \det \big(I+\sum_{i\in [N]}\alert<2>{\lambda_i}x_ix_i^T\big) \\ \text{subj. to}\qquad &\textstyle\sum_{i\in [N]}\alert<2>{\lambda_i}c_i\leq B, \lambda_i\in [0,1] \end{align*} \end{block} } \pause \vspace{0.5cm} $L(\lambda^*)$ is: \begin{itemize} \item Monotone in $c$ \pause \item Poly-time: $L$ is concave \pause \item Close to $OPT$:\pause \vspace{0.5cm} \begin{block}{Technical Lemma} \begin{displaymath} OPT\leq L(\lambda^*) \leq 2 OPT + 2V(\{i^*\}) \end{displaymath} \end{block} \end{itemize} \end{frame} \begin{frame}{Proof Steps} \begin{block}{Technical Lemma} \begin{displaymath} OPT\leq L(\lambda^*) \leq 2 OPT + 2V(\{i^*\}) \end{displaymath} \end{block} \uncover<2->{Relate $L$ to the multi-linear extension $F$: \begin{itemize} \item $F(\lambda)=\mathbb{E}_{S\sim\lambda}\Big[\log\det\big(I+\sum_{i\in S}x_ix_i^T\big)\Big]$ \item $L(\lambda)=\log\det\Big(I+\mathbb{E}_{S\sim\lambda}\big[\sum_{i\in S}x_ix_i^T\big]\Big)$ \end{itemize} \bigskip} \uncover<3->{ Bounding the derivatives of $\log\det$ $\Rightarrow$ $L(\lambda)\leq 2 F(\lambda)$ } \bigskip \uncover<4>{Finally, $F(\lambda^*)\leq OPT+V(\{i^*\})$ (pipage rounding).} \end{frame} \begin{frame}{Summary} \begin{block}{Allocation rule} \begin{itemize} \item Compute $i^* = \arg\max_i V(\{i\})$ \item Compute $S_G$ greedily \item Compute $L(\lambda^*) = \max_{\lambda}\Big\{\log \det \big(I+\sum_{i\in [N]}\lambda_ix_ix_i^T\big),\; \sum_{i\in[N]}\lambda_ic_i\leq B\Big\}$ \item Return: \begin{itemize} \item $i^*$ if $V(\{i^*\}) \geq L(\lambda^*)$ \item $S_G$ otherwise \end{itemize} \end{itemize} \end{block} \vspace{0.5cm} \pause Along with threshold payments: \begin{itemize} \item individually rational, truthful, budget-feasible \pause \item poly-time \pause \item 12.98-approximate \end{itemize} \end{frame} \begin{frame}{} \begin{center} \Huge{\alert{Are we done?}} \end{center} \end{frame} \begin{frame}{Tiny glitch} \begin{block}{Allocation rule} \begin{itemize} \item Compute $i^* = \arg\max_i V(\{i\})$ \item Compute $S_G$ greedily \item Compute $\alert<2>{L(\lambda^*) = \max_{\lambda}\Big\{\log \det \big(I+\sum_{i\in [N]}\lambda_ix_ix_i^T\big),\; \sum_{i\in[N]}\lambda_ic_i\leq B\Big\}}$ \item Return: \begin{itemize} \item $i^*$ if $V(\{i^*\}) \geq L(\lambda^*)$ \item $S_G$ otherwise \end{itemize} \end{itemize} \end{block} \pause \vspace{0.5cm} \begin{itemize} \item $L(\lambda^*)$ is monotone in $c$ \pause \item but not an approximation of $L(\lambda^*)$ \end{itemize} \end{frame} \begin{frame}{$\varepsilon$-truthfulness} Assume that: \begin{displaymath} c_i'\leq c_i-\varepsilon \Rightarrow L(\lambda^*_{c'})\geq L(\lambda^*_c)+\delta \end{displaymath} \pause \vspace{1cm} Then, if $\tilde{L}(\lambda^*_c)$ is a $\delta$-approximate of $L(\lambda^*_c)$ \begin{displaymath} c_i'\leq c_i-\varepsilon \Rightarrow \tilde{L}(\lambda^*_{c'})\geq \tilde{L}(\lambda^*_c) \end{displaymath} \vspace{1cm} \pause Implies $\varepsilon$-truthfulness: \begin{center} \alert{users have not incentive to lie by more $\varepsilon$} \end{center} \end{frame} \begin{frame}{Sensitivity analysis} \begin{block}{Goal ($\varepsilon$, $\delta$)-monotonicity} \begin{displaymath} c_i'\leq c_i-\varepsilon \Rightarrow L(\lambda^*_{c'})\geq L(\lambda^*_c)+\delta \end{displaymath} \end{block} \pause \vspace{0.5cm} Bad news: \begin{displaymath} \frac{\partial L(\lambda^*_c)}{\partial c_i} \propto \lambda_i^*\only<3->{\alert{\geq \alpha}} \end{displaymath} \pause \vspace{0.5cm} Solution: regularize the problem \begin{displaymath} L(\lambda^*) = \max_{\lambda}\Big\{\log \det \big(I+\sum_{i\in [N]}\lambda_ix_ix_i^T\big),\; \sum_{i\in[N]}\lambda_ic_i\leq B,\; \alert{\lambda_i\geq \alpha}\Big\} \end{displaymath} \pause \vspace{0.5cm} Then carefully tune all the parameters… \end{frame} \section{Generalization} \begin{frame}{Outline} \tableofcontents[currentsection] \end{frame} \begin{frame}{Towards More General ML Tasks} \begin{center} \includegraphics<1>[scale=0.4]{st2.pdf} \includegraphics<2>[scale=0.4]{st3.pdf} \includegraphics<3>[scale=0.4]{st4.pdf} \includegraphics<4-5>[scale=0.4]{st25.pdf} \includegraphics<6->[scale=0.4]{st26.pdf} \end{center} \begin{overprint} \onslide<1> \begin{center}$N$ experiment subjects\end{center} \onslide<2> \begin{center} $x_i\in \Omega$: public features \end{center} \onslide<3> \begin{center} $y_i\in \reals$: private data \end{center} \onslide<4-5> \begin{center} \textbf{Hypothesis.} There exists $h:\Omega\to \reals$ s.t. % \begin{displaymath} $y_i = h(x_i) + \varepsilon_i,$ %\quad where $\varepsilon_i$ are independent. \visible<5>{Examples: Logistic Regression, LDA, SVMs, \etc} % \end{displaymath} \end{center} %$$y_i = \beta^Tx_i + \varepsilon_i, i=1,\ldots, N$$ %\end{center} \onslide<6> \begin{center} Experimenter {\tt E} wishes to learn $h$, and has a prior distribution over $$\mathcal{H}=\{\text{mappings from }\Omega\text{ to }\reals\}.$$ \end{center} \onslide<7->\begin{center} \vspace*{-0.5cm} % \begin{block} %{Value function: Information gain} \begin{displaymath} V(S) = H(h) - H(h\mid y_i,i\in S),\quad S\subseteq[N] \end{displaymath} % \end{block} \visible<8>{$V$ is submodular! [Krause and Guestrin 2009]} \end{center} \end{overprint} \end{frame} \begin{comment} \begin{itemize} \item Generative model: $y_i = f(x_i) + \varepsilon_i,\;i\in\mathcal{A}$ \pause \item prior knowledge of the experimenter: $f$ is a \alert{random variable} \pause \item \alert{uncertainty} of the experimenter: entropy $H(f)$ \pause \item after observing $\{y_i,\; i\in S\}$, uncertainty: $H(f\mid S)$ \end{itemize} \pause \vspace{0.5cm} \begin{block}{Value function: Information gain} \begin{displaymath} V(S) = H(f) - H(f\mid S),\quad S\subset\mathcal{A} \end{displaymath} \end{block} \pause \vspace{0.5cm} $V$ is \alert{submodular} $\Rightarrow$ randomized budget feasible mechanism \end{frame} \end{comment} \begin{frame}{Conclusion} \begin{itemize} \item Experimental design + Budget Feasible Mechanisms \vspace{1cm} \pause \item Deterministic mechanism for other ML Tasks? General submodular functions? \vspace{1cm} \pause \item Approximation ratio $\simeq \alert{13}$. Lower bound: \alert{$2$} \end{itemize} \end{frame} \begin{frame}{} \vspace{\stretch{1}} \begin{center} {\Huge Thank you!} \end{center} \vspace{\stretch{1}} \end{frame} \begin{frame}{Non-Homotropic Prior} Recall that: \begin{align*} V(S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\ & = \frac{1}{2}\log\det (R^{-1}+\sum_{i\in S}x_ix_i^T) \end{align*} What if $R\neq I$? \begin{theorem} There exists a truthful, poly-time, and budget feasible mechanism for the objective function $V$ above. Furthermore, the algorithm computes a set $S^*$ such that: \begin{displaymath} OPT \leq \frac{5e-1}{e-1}\frac{2}{\mu\log(1+1/\mu)}V(S^*) + 5.1 \end{displaymath} where $\mu$ is the largest eigenvalue of $R$. \end{theorem} \end{frame} \end{document}