\documentclass{beamer} \usepackage[utf8x]{inputenc} \usepackage[greek,english]{babel} \usepackage[LGR,T1]{fontenc} \usepackage{amsmath,bbm,verbatim} \usepackage{algpseudocode,algorithm} \usepackage{graphicx} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\argmin}{arg\,min} \usetheme{Boadilla} \newcommand{\E}{{\tt E}} \title[EconCS Seminar]{Budget Feasible Mechanisms for Experimental Design} \author[Horel, Ioannidis, Muthu]{Thibaut Horel$^*$, \alert{Stratis Ioannidis}$^\dagger$, and S. Muthukrishnan$^\ddagger$} \institute[]{$^*$INRIA-ENS, $^\dagger$Technicolor, $^\ddagger$Rutgers University} \setbeamercovered{transparent} \setbeamertemplate{navigation symbols}{} %\AtBeginSection[] %{ %\begin{frame} %\frametitle{Outline} %\tableofcontents[currentsection] %\end{frame} %} \newcommand{\ie}{\emph{i.e.}} \newcommand{\eg}{\emph{e.g.}} \newcommand{\etc}{\emph{etc.}} \newcommand{\reals}{\ensuremath{\mathbb{R}}} \usefonttheme[onlymath]{serif} \begin{document} \begin{frame} \maketitle \end{frame} \section{Introduction} \begin{frame}{Motivation:A Data Market} \begin{center} \includegraphics<1>[scale=0.4]{st1a.pdf} \includegraphics<2>[scale=0.4]{st1b.pdf} \includegraphics<3>[scale=0.4]{st1c.pdf} \includegraphics<4>[scale=0.4]{st1d.pdf} \includegraphics<5>[scale=0.4]{st1dd.pdf} \includegraphics<6>[scale=0.4]{st1e.pdf} \includegraphics<7>[scale=0.4]{st1f.pdf} \includegraphics<8>[scale=0.4]{st1g.pdf} \end{center} % \begin{center} % \begin{overprint} % \onslide<1-8>\begin{center}\end{center} % \end{overprint} % \end{center} \end{frame} \begin{frame}{Challenges} % \begin{overprint} \begin{itemize} \item<1-> Value of data? \visible<3-4>{\begin{itemize} \item Experimental Design \end{itemize}} \vspace*{1cm} \item<2-> Strategic users? \visible<4>{\begin{itemize} \item Budget Feasible Auctions [Singer 2010] \end{itemize}} \end{itemize} % \end{overprint} \end{frame} \begin{frame}{Contributions} \pause \begin{itemize} \item Experimental design when users are strategic \pause \vspace*{1cm} \item Linear Regression \pause \begin{itemize} \item \emph{Deterministic}, truthful, budget feasible, 12.98-appriximate mechanism. \pause \item Singer 2010, Chen 2011:\\ \emph{Randomized}, universaly truthful, budget feasible, 7.91-approximate mechanism. \end{itemize} \pause \vspace*{1cm} \item Generalization to other machine learning tasks. \end{itemize} \end{frame} \section{Setting} \begin{frame}{Outline} \tableofcontents \end{frame} \begin{frame}{Outline} \tableofcontents[currentsection] \end{frame} \begin{frame}{Experimental Design} \begin{center} \includegraphics<1>[scale=0.4]{st2.pdf} \includegraphics<2>[scale=0.4]{st3.pdf} \includegraphics<3>[scale=0.4]{st4.pdf} \includegraphics<4>[scale=0.4]{st5.pdf} \includegraphics<5>[scale=0.4]{st6.pdf} \includegraphics<6>[scale=0.4]{st7.pdf} \includegraphics<7>[scale=0.4]{st8.pdf} \includegraphics<8>[scale=0.4]{st9.pdf} \end{center} \begin{center} \begin{overprint} \onslide<1>\begin{center}$N$ users (``experiment subjects'') \end{center} \onslide<2> \begin{center} $x_i\in \reals^d$: public features (\eg, age, gender, height, \etc) \end{center} \onslide<3> \begin{center} $y_i\in \reals$: private data (\eg, survey answer, medical test outcome, etc.) \end{center} \onslide<4> %\begin{} \textbf{Gaussian Linear Model.} There exists $\beta\in \reals^d$ s.t. \begin{displaymath} y_i = \beta^T x_i + \varepsilon_i,\quad \varepsilon_i\sim\mathcal{N}(0,\sigma^2), \quad i=1,\ldots,N \end{displaymath} %$$y_i = \beta^Tx_i + \varepsilon_i, i=1,\ldots, N$$ %\end{center} \onslide<5-7> \begin{center} Experimenter {\tt E} wishes to learn $\beta$ and can perform at most $k$ experiments. \end{center} \onslide<8> \begin{center}{\tt E} computes estimate $\hat{\beta}$ of $\beta$ through ridge regression. \end{center} \end{overprint} \end{center} \end{frame} \begin{frame}{Linear (Ridge) Regression} %There exists $\beta\in \reals^d$ s.t. % \begin{displaymath} % y_i = \beta^T x_i + \varepsilon_i,\quad % \varepsilon_i\sim\mathcal{N}(0,\sigma^2), \quad i=1,\ldots,N % \end{displaymath} \visible<1->{Let $S\subset [N]\equiv \{1,\ldots,N\}$ be the set of experiments performed.\\\medskip} \visible<2->{Assume that \E\ has a \emph{prior} on $\beta$: $$\beta \sim \mathcal{N}(0,\sigma^2 R). $$} \visible<3->{Maximum a-posteriori estimation: \begin{align*} \hat{\beta} &= \argmax_{\beta\in\reals^d} \mathbf{P}(\beta\mid y_i, i\in S) \\ &=\argmin_{\beta\in\reals^d} \big(\sum_{i\in S} (y_i - {\beta}^Tx_i)^2 + \only<3-4>{\alert<4->{{\beta}^TR^{-1}\beta}\big)} \only<5>{\alert{\|\beta\|_2^2}\big)~~~~~} %= (R+{X_S}^TX_S)^{-1}X_S^Ty_S \end{align*} } \visible<4->{\hspace*{3in}\alert{Ridge Regression}\\} \visible<5>{\hspace*{3in}$R=I$: homotropic prior} \end{frame} \begin{frame}{Value Function} Select $S\subset [N]$, s.t. $|S|\leq k$. \\\bigskip \visible<2->{ Information Gain/D-optimality Criterion: \begin{align*} V(S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\ \visible<3->{& = \frac{1}{2}\log\det (R^{-1}+X_S^TX_S)} \end{align*} \visible<3->{where $$X_S=[x_i^T]_{i\in S}\in \reals^{|S|\times d}$$} } \end{frame} %\begin{frame}{Classic Experimental Design} %\begin{center} %\includegraphics[scale=0.3]{st10.pdf} %\end{center} %\begin{align*} %\text{Maximize}& & V(S) &= \log \det (R^{-1}+X^T_SX_S) \\ %\text{subj. to}& & |S|&\leq k %\end{align*} %\end{frame} \begin{frame}{Cardinality vs. Budget Constraint} \begin{center} \includegraphics<1>[scale=0.3]{st10a.pdf} \includegraphics<2>[scale=0.3]{st10b.pdf} \includegraphics<3>[scale=0.3]{st10c.pdf} \includegraphics<4>[scale=0.3]{st10d.pdf} \includegraphics<5->[scale=0.3]{st10f.pdf} \end{center} \begin{center} \begin{overprint} \onslide<1>\begin{align*} \text{Maximize}& & V(S) &= \log \det (R^{-1}+X^T_SX_S) \\ \text{subj. to}& & |S|&\leq k \end{align*} \onslide<2>\begin{center} Each subject $i\in [N]$ has a cost $c_i\in \reals_+$ \end{center} \onslide<3> \begin{center} \E\ has a budget $B$. \end{center} \onslide<4-5> \begin{center} \E\ can pay subjects\visible<5>{; $y_i$ is revealed only if $i$ is paid.} \end{center} \onslide<6-> \begin{block}{\textsc{Experimental Design Problem (EDP)} } \vspace*{-0.4cm} \begin{align*} \text{Maximize}\qquad &V(S) = \log \det (\alert<7>{I}+X^T_SX_S) \\ \text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B \end{align*} \end{block} \visible<7>{\alert{$R=I$: homotropic prior}} \end{overprint} \end{center} \end{frame} \begin{frame}{Full-Information Setting} \begin{block}{\textsc{Experimental Design Problem (EDP)} } \vspace*{-0.4cm} \begin{align*} \text{Maximize}\qquad &V(S) = \log \det ({I}+X^T_SX_S) \\ \text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B \end{align*} \end{block} \begin{itemize} \item<2-> EDP is NP-hard \item<3-> $V$ is submodular, monotone, non-negative, and $V(\emptyset)=0$ \item<4-> $\frac{1}{1-1/e}$-approximable (Sviridenko 2004, Krause and Guestrin 2005) \end{itemize} \end{frame} \begin{frame}{Strategic Subjects} %\begin{center} %\includegraphics<1->[scale=0.3]{st10c.pdf} %\end{center} %\begin{overprint} \begin{itemize} \visible<2->{\item Subjects are \alert{strategic} and may lie about costs $c_i$.}\\\bigskip \visible<3>{\item Subjects \alert{do not lie} about $y_i$ (tamper-proof experiments).} \end{itemize} \end{frame} \begin{frame}{Budget Feasible Mechanism Design [Singer 2010]} \begin{center} \includegraphics<1>[scale=0.3]{st11a.pdf} \includegraphics<2>[scale=0.3]{st11b.pdf} \includegraphics<3>[scale=0.3]{st11c.pdf} \includegraphics<4>[scale=0.3]{st11d.pdf} \end{center} \begin{itemize} %\item<1->Fix budget $B$ and value function $V:2^{[N]}\to\reals_+$ \item<2->Let $c=[c_i]_{i\in [N]}$ be the subject costs. \item<3-> A mechanism $\mathcal{M}(c)=(S(c),p(c))$ comprises \begin{itemize} \item<3-> an \alert{allocation function} $S:\reals_+^N\to 2^{[N]}$, and \item<4> a \alert{payment function} $p:\reals_+^N\to \reals_+^N$. \end{itemize} \end{itemize} \end{frame} %\section{Budget feasible mechanism design} %\begin{frame}{Budget Feasible Mechanism Design [Singer 2010]} %\begin{itemize} % \item set of $N$ sellers: $\mathcal{A} = \{1,\ldots,N\}$; a buyer % \vspace{0.3cm} % \pause % \item $V$ value function of the buyer, $V:2^\mathcal{A}\rightarrow \mathbb{R}^+$ % \vspace{0.3cm} % \pause % \item $c_i\in\mathbb{R}^+$ price of seller's $i$ good % \vspace{0.3cm} % \pause % \item $B$ budget constraint of the buyer %\end{itemize} % %\vspace{0.5cm} %\pause % %\begin{block}{Goal} % \begin{itemize} % \item Find $S\subset \mathcal{A}$ \alert{maximizing} $V(S)$ % \vspace{0.3cm} % \item Find \alert{payment} $p_i$ to seller $i\in S$ % \end{itemize} %\end{block} %\end{frame} \begin{frame}{Objectives} Mechanism $\mathcal{M}=(S,p)$ must be: \pause \vspace{0.3cm} \begin{itemize} \item Normalized: $p_i=0$ if $i\notin S$. \vspace{0.2cm} \pause \item Individually Rational: $p_i\geq c_i,\;i\in S$ \vspace{0.2cm} \pause \item Truthful: $p_i(c_i,c_{-i})-\mathbbm{1}_{i\in S(c_i,c_{-i})}\cdot c_i \geq p_i(c_i',c_{-i})-\mathbbm{1}_{i\in S(c_i',c_{-i})}\cdot c_i $ \vspace{0.2cm} \pause \item budget feasible: $\sum_{i\in S} p_i \leq B$ \vspace{0.2cm} \end{itemize} \pause \vspace{0.3cm} Mechanism must be: \vspace{0.3cm} \pause \begin{itemize} \item computationally efficient: polynomial time \pause \vspace{0.2cm} \item constant approximation: $V(OPT) \leq \alpha V(S)$ with: \begin{displaymath} OPT = \arg\max_{S\subset \mathcal{A}} \left\{V(S)\mid \sum_{i\in S}c_i\leq B\right\} \end{displaymath} \end{itemize} \end{frame} \begin{frame}{Known Results} When $V$ is submodular: \vspace{1cm} \pause \begin{itemize} \item \alert{randomized}, universally truthful, budget feasible mechanism, approximation ratio: $7.91$ [Singer 2010, Chen \emph{et al.}, 2011] \vspace{1cm} \pause \item \alert{deterministic} mechanisms for specific submodular $V$ functions: \vspace{0.3cm} \begin{itemize} \item Knapsack: $2+\sqrt{2}$ [Singer 2010, Chen \emph{et al.}, 2011] \vspace{0.3cm} \item Matching: 7.37 [Singer, 2010] \vspace{0.3cm} \item Coverage: 31 [Singer, 2012] \vspace{0.3cm} \end{itemize} \end{itemize} \end{frame} \begin{comment} \begin{frame}{Outline} \tableofcontents[currentsection] \end{frame} \begin{frame}{Linear Regression} \begin{center} \includegraphics<1-4>[scale=0.5]{5.pdf} \includegraphics<5>[scale=0.5]{6.pdf} \includegraphics<6>[scale=0.5]{7.pdf} \includegraphics<7>[scale=0.5]{8.pdf} \end{center} \begin{center} \begin{overprint} \onslide<1>\begin{center}$N$ users\end{center} \onslide<2> \begin{center} $x_i$: public features (e.g. age, gender, height, etc.) \end{center} \onslide<3> \begin{center} $y_i$: private data (e.g. disease, etc.) \end{center} \onslide<4> \begin{center} Gaussian Linear model: $y_i = \beta^Tx_i + \varepsilon_i$ \end{center} \begin{displaymath} \beta^* = \arg\min_\beta \sum_i |y_i-\beta^Tx_i|^2 \end{displaymath} \end{overprint} \end{center} \end{frame} \begin{frame}{Experimental design} \begin{itemize} \item Public vector of features $x_i\in\mathbb{R}^d$ \item Private data $y_i\in\mathbb{R}$ \end{itemize} \vspace{0.5cm} Gaussian linear model: \begin{displaymath} y_i = \beta^T x_i + \varepsilon_i,\quad\beta\in\mathbb{R}^d,\; \varepsilon_i\sim\mathcal{N}(0,\sigma^2) \end{displaymath} \pause \vspace{0.5cm} Which users to select?\pause{} Experimental design $\Rightarrow$ D-optimal criterion \vspace{0.5cm} \begin{block}{Experimental Design} \begin{displaymath} \textsf{\alert{maximize}}\quad V(S) = \log\det\left(I_d + \sum_{i\in S} x_i x_i^T\right)\quad \textsf{\alert{subject to}}\quad |S|\leq k \end{displaymath} \end{block} \end{frame} \begin{frame}{Budgeted Experimental design} \begin{displaymath} \textsf{\alert{maximize}}\quad V(S) = \log\det\left(I_d + \sum_{i\in S} x_i x_i^T\right)\quad \textsf{\alert{subject to}}\quad \sum_{i\in S}c_i\leq B \end{displaymath} \vspace{1cm} \begin{itemize} \item the non-strategic optimization problem is NP-hard \vspace{0.3cm} \pause \item $V$ is submodular \vspace{0.3cm} \pause \item previous results give a randomized budget feasible mechanism \vspace{0.3cm} \pause \item deterministic mechanism? \end{itemize} \end{frame} \begin{frame}{Main result} \end{comment} \section{Main Result} \begin{frame}{Outline} \tableofcontents[currentsection] \end{frame} \begin{frame}{Our Main Result} \begin{theorem} There exists deterministic, budget feasible, individually rational and truthful mechanism for EDP which runs in polynomial time. Its approximation ratio is: \begin{displaymath} \frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)}+\varepsilon \simeq 12.98 +\varepsilon \end{displaymath} \end{theorem} \end{frame} \begin{frame}{Sketch of proof} \begin{block}{Mechanism (Chen et. al, 2011) for submodular $V$} \begin{itemize} \item Find $i^* = \arg\max_i V(\{i\})$ \item Compute $S_G$ greedily \item Return: \begin{itemize} \item $\{i^*\}$ if $V(\{i^*\}) \geq \only<1-2>{V(OPT_{-i^*})}\only<3>{\alert{V(OPT_{-i^*})}}\only<4->{\alert{L^*}}$ \item $S_G$ otherwise \end{itemize} \end{itemize} \end{block} \vspace{0.5cm} \pause Valid mechanism, approximation ratio: 8.34 \vspace{0.5cm} \pause \alert{Problem:} $OPT_{-i^*}$ is NP-hard to compute \vspace{0.5cm} \pause \begin{columns}[c] \begin{column}{0.53\textwidth} \alert{Solution:} Replace $V(OPT_{-i^*})$ with \alert<7>{$L^*$}: \pause \begin{itemize} \item computable in polynomial time \pause \item close to $V(OPT_{-i^*})$ \end{itemize} \end{column} \pause \begin{column}{0.45\textwidth} \begin{itemize} \item Knapsack (Chen et al., 2011) \item Coverage (Singer, 2012) \end{itemize} \end{column} \end{columns} \end{frame} \begin{frame}{Sketch of proof (2)} \begin{displaymath} L^* = \arg\max_{\lambda\in [0,1]^n} \left\{\log\det\left(I_d + \sum_i \lambda_i x_i x_i^T\right)\mid \sum_{i=1}^n\lambda_i c_i\leq B\right\} \end{displaymath} \vspace{1cm} \begin{itemize} \item polynomial time?\pause{} convex optimization problem \pause \vspace{0.5cm} \item close to $V(OPT_{-i^*})$?\pause \vspace{0.5cm} \begin{block}{Technical lemma} \begin{displaymath} L^* \leq 2 V(OPT) + V(\{i^*\}) \end{displaymath} \end{block} \end{itemize} \end{frame} \section{Generalization} \begin{frame}{Outline} \tableofcontents[currentsection] \end{frame} \begin{frame}{Generalization} \begin{itemize} \item Generative model: $y_i = f(x_i) + \varepsilon_i,\;i\in\mathcal{A}$ \pause \item prior knowledge of the experimenter: $f$ is a \alert{random variable} \pause \item \alert{uncertainty} of the experimenter: entropy $H(f)$ \pause \item after observing $\{y_i,\; i\in S\}$, uncertainty: $H(f\mid S)$ \end{itemize} \pause \vspace{0.5cm} \begin{block}{Value function: Information gain} \begin{displaymath} V(S) = H(f) - H(f\mid S),\quad S\subset\mathcal{A} \end{displaymath} \end{block} \pause \vspace{0.5cm} $V$ is \alert{submodular} $\Rightarrow$ randomized budget feasible mechanism \end{frame} \begin{frame}{Conclusion} \begin{itemize} \item Experimental design + Auction theory = powerful framework \vspace{1cm} \pause \item deterministic mechanism for the general case? other learning tasks? \vspace{1cm} \pause \item approximation ratio $\simeq \alert{13}$. Lower bound: \alert{$2$} \end{itemize} \end{frame} \end{document}