\documentclass{beamer} \usepackage[utf8x]{inputenc} \usepackage[greek,english]{babel} \usepackage[LGR,T1]{fontenc} \usepackage{amsmath} \usepackage{algpseudocode,algorithm} \DeclareMathOperator*{\argmax}{arg\,max} \usetheme{Boadilla} \usecolortheme{beaver} \title[Budget Feasible Mechanisms for Experimental Design]{Budget Feasible Mechanisms for Experimental Design} \author{xx\\ Joint work with yy and zz} \institute[]{} \setbeamercovered{transparent} \AtBeginSection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection] \end{frame} } \begin{document} \begin{frame} \maketitle \end{frame} \begin{frame} \tableofcontents \end{frame} \section{Experimental Design} \begin{frame}{Experimental Design} An experimenter is about to conduct an experiment with users. \begin{itemize} \item $n$ users \item $x_i\in\mathbb{R}^d$: public features of user $i$ \item $c_i\in\mathbb{R}^+$: cost of user $i$ for taking part in the experiment \end{itemize} When paid $c_i$, user $i$ reveals $y_i$: \begin{displaymath} y_i = \beta^T x_i + \varepsilon_i,\quad\beta\in\mathbb{R}^d,\; \varepsilon_i\sim\mathcal{N}(0,\sigma^2) \end{displaymath} $\beta$ is \alert{unknown} to the experimenter. \begin{block}{} \alert{Question:} budget constraint $B$, which users to pick to learn $\beta$ as well as possible without spending more than $B$? \end{block} \end{frame} \begin{frame}{Evaluation criterion} \begin{block}{} \alert{Question:} How to measure the helpfulness of a set of users $S$ in learning $\beta$? \end{block} \vspace{0.5cm} Bayesian approach: \begin{itemize} \item \emph{a priori} knowledge: prior distribution over $\beta$ \item the entropy of $\beta$, $H(\beta)$ measures the uncertainty of the experimenter \item after observing $Y_S = \{y_i,\; i\in S\}$, uncertainty becomes $H(\beta\mid Y_S)$ \end{itemize} \vspace{0.5cm} The value of $S$ is the \alert{entropy reduction}: \begin{displaymath} V(S) = H(\beta) - H(\beta\mid Y_S) \end{displaymath} \end{frame} \begin{frame}{Value function} Gaussian linear model: \begin{displaymath} y_i = \beta^T x_i + \varepsilon_i,\quad\beta\in\mathbb{R}^d,\; \varepsilon_i\sim\mathcal{N}(0,\sigma^2) \end{displaymath} Typical prior distribution $\beta\sim\mathcal{N}(0,\tau I_d)$ \vspace{0.5cm} \begin{block}{} Under the Gaussian linear model and Gaussian prior distribution: \begin{displaymath} V(S) = \log\det\Big(I_d + \lambda\sum_{i\in S}x_i x_i^T \Big) \end{displaymath} \end{block} \vspace{0.5cm} \alert{Remark:} $V$ can be computed efficiently using a Cholesky decomposition \end{frame} \section{Non-strategic case} \begin{frame}{Optimization Problem} \begin{block}{P1} \begin{align*} &\text{maximize}\; V(S) = \log\det\Big(I_d + \lambda\sum_{i\in S}x_i x_i^T \Big)\\ &\text{subject to}\; \sum_{i\in S}c_i\leq B\quad\text{(Knapsack constraint)} \end{align*} \end{block} \onslide<2-> Good news: $V$ is submodular (diminishing return): \begin{displaymath} \forall S\subseteq T\, \forall i,\; V(S\cup\{i\}) - V(S)\geq V(T\cup\{i\}) - V(T) \end{displaymath} \onslide<3-> Bad news: Maximizing a submodular function under a knapsack constraint is NP-hard (even in the specific case of $\log\det$) \end{frame} \begin{frame}{Approximation} \begin{definition}[Approximation ratio] Let $OPT$ denote the optimal solution to P1, $S$ is an $\alpha$-approximation if: \begin{displaymath} V(OPT)\leq \alpha V(S) \end{displaymath} \end{definition} \vspace{0.5cm} \begin{theorem}[Sviridenko] \begin{enumerate} \item There is an algorithm which returns a set $S$ which is a $\frac{e}{e-1}$-approximation \item No algorithm can do better unless P=NP \end{enumerate} \end{theorem} \vspace{0.5cm} The algorithm is a combination of an enumeration method and a greedy heuristic. \end{frame} \begin{frame}{Greedy algorithm} \begin{block}{Greedy($V$, $B$)} \begin{algorithmic} \State $i \gets \argmax_{1\leq j\leq n}\frac{V(j)}{c_j}$ \State $S \gets \emptyset$ \While{$c_i\leq B - \sum_{j\in S} c_j$} \State $S \gets S\cup\{i\}$ \State $i \gets \argmax_{1\leq j\leq n} \frac{V(S\cup\{j\})-V(S)}{c_j}$ \EndWhile \State \textbf{return} $S$ \end{algorithmic} \end{block} \vspace{0.5cm} \begin{lemma} Greedy has an \alert{unbounded} approximation ratio. \end{lemma} \end{frame} \begin{frame} \begin{block}{MaxGreedy} \begin{algorithmic} \State $i^* \gets \argmax_{1\leq j\leq n} V(j)$ \State $S \gets$ Greedy($V$, $B$) \If{$V(i^*)\geq V(S)$} \State \textbf{return} $\{i^*\}$ \Else \State \textbf{return} $S$ \EndIf \end{algorithmic} \end{block} \vspace{0.5cm} \begin{lemma} MaxGreedy is a $\frac{5e}{e-1}$ approximation \end{lemma} \end{frame} \section{Strategic case} \begin{frame}{Reverse auction} \alert{Problem:} In real life, user are strategic agents. They lie about their costs. This is a \alert{reverse auction}: the experimenter wants to buy data from users. \vspace{0.5cm} \alert{Goal:} Design an auction mechanism: \begin{itemize} \item a selection rule $s: (c_1,\ldots,c_n) \mapsto (s_1,\ldots,s_n)$, $s_i\in\{0,1\}$ \item a payment rule $p: (c_1,\ldots,c_n) \mapsto (p_1,\ldots,p_n)$, $p_i\in\mathbb{R}^+$ \end{itemize} \vspace{0.5cm} As usual in auction mechanism design, we want payments to be: \begin{itemize} \item individually rational: $p_i\geq c_i$ \item truthful: reporting one's true cost is a dominant strategy \item normalized: $s_i=0$ implies $p_i=0$ \end{itemize} \end{frame} \begin{frame}{Optimization problem for budget feasible auctions} \begin{block}{P2} \begin{align*} &\text{maximize}\; V\big(s(c_1,\ldots,c_n)\big) = \log\det\Big(I_d + \lambda\sum_{i\in S}x_i x_i^T \Big)\\ &\text{subject to}\; \sum_{i\in S}\alert{p_i}\leq B\quad\text{(budget feasible)} \end{align*} where the payments are further constrained to be individually rational, truthful and normalized \end{block} \vspace{1cm} This is again NP-hard $\Rightarrow$ we seek good approximation ratios \end{frame} \begin{frame}{Myerson's theorem} \begin{theorem}[Myerson] Let $(s, p)$ be a mechanism. If: \begin{itemize} \item $s$ is \alert{monotonic}: if $c_i\leq c_i'$ then $s_i \geq s_i'$ \item users are paid \alert{threshold payments}: $p_i = \inf\{c_i':i\notin s(c_i',c_{-i})\}$ \end{itemize} Then, the mechanism is individually rational and truthful. \end{theorem} \vspace{1cm} \alert{Consequence:} It suffices to find a monotonic selection rule such that the threshold payments are within the budget constraint. \end{frame} \begin{frame}{Main result} \begin{theorem} There is a budget feasible, individually rational and truthful mechanism for the experimental design problem which runs in polynomial time. Its approximation ratio is: \begin{displaymath} \frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)} \simeq 12.98 \end{displaymath} \end{theorem} \end{frame} \begin{frame}{Greedy revisited} \begin{block}{Greedy\only<2>{\alert{'}}($V$, $B$)} \begin{algorithmic} \State $i \gets \argmax_{1\leq j\leq n}\frac{V(j)}{c_j}$ \State $S \gets \emptyset$ \While{$c_i\leq \only<1>{B - \sum_{j\in S} c_j} \only<2->{\alert{\frac{B}{2}\frac{V(S\cup\{i\})-V(S)}{V(S\cup\{i\})}}}$} \State $S \gets S\cup\{i\}$ \State $i \gets \argmax_{1\leq j\leq n} \frac{V(S\cup\{j\})-V(S)}{c_j}$ \EndWhile \State \textbf{return} $S$ \end{algorithmic} \end{block} \vspace{1cm} \alert{Problem:} The threshold payments are not budget feasible. \end{frame} \begin{frame}{MaxGreedy revisited} \begin{block}{MaxGreedy} \begin{algorithmic} \State $i^* \gets \argmax_{1\leq j\leq n} V(j)$ \State $S \gets$ Greedy\alert{'}($V$, $B$) \If{$V(i^*)\geq \only<1>{V(S)}\only<2,3>{\alert{OPT_{-i^*}}}\only<4>{\alert{OPT'_{i^*}}}$} \State \textbf{return} $\{i^*\}$ \Else \State \textbf{return} $S$ \EndIf \end{algorithmic} \end{block} \vspace{0.5cm} \only<1>{\alert{Problem:} MaxGreedy is not monotonic} \only<2,3>{\alert{Solution 1:} use $OPT_{-i^*} = \max_{S, i^*\notin S}\{V(S) \mid \sum_{j\in S} c_j\}$. Gives a 8.34 approximation} \only<3>{\alert{Problem:} $OPT_{-i^*}$ cannot be computed in polynomial time} \only<4->{\alert{Solution 2:} use a concave relaxation: \begin{displaymath} OPT'_{i^*} = \max_{\lambda\in[0, 1]^n, \lambda_{i^*} = 0} L(\lambda) = \max_{\lambda\in[0, 1]^n, \lambda_{i^*} = 0}\log\det\big(I_d + \sum_{i=1}^n \lambda_i x_ix_i^T\big) \end{displaymath} } \end{frame} \begin{frame}{Proof} \begin{itemize} \item Monotonicity: OK \pause \item Budget feasibility: OK \pause \item Approximation ratio: what do we lose by using a concave relaxation? Powerful method, \alert{pipage rounding} [Ageev, Sviridenko] \begin{itemize} \item let's introduce $F(\lambda) = \mathbb{E}\Big[\log\det(I_d+\sum_{i=1}^n \mu_ix_ix_i^T)\Big]$, $\mu_i\sim\mathcal{B}(\lambda_i)$ \item $L(\lambda) \leq 2 F(\lambda)$ (technical lemma) \item $F$ is well-behaved: $\lambda$ can be round to a binary vector $\bar{\lambda}$ s.t $F(\lambda)\leq F(\bar{\lambda})$ \item $OPT'_{-i^*}\leq 2 OPT_{-i^*} + V(i^*)$ \item we can conclude by using the approximation ratio for $OPT_{-i^*}$ \end{itemize} \end{itemize} \end{frame} \begin{frame}{Conclusion} \begin{itemize} \item Experimental design + Auction theory = powerful framework when working with user data \vspace{1cm} \item Can we extend this to learning tasks beyond linear regression? \vspace{1cm} \item $\simeq \alert{13}$ approximation ratio. Lower bound: \alert{$2$} \end{itemize} \end{frame} \end{document}