summaryrefslogtreecommitdiffstats
path: root/appendix.tex
blob: a162a4f5df41aa7ca58c91ca8d633bca5361e60d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
\section{Proofs of Statements in Section~\ref{sec:concave}}
\subsection{Proof of Lemma~\ref{lemma:relaxation-ratio}}\label{proofofrelaxation-ratio}
%\begin{proof}
    The bound $F_{\mathcal{N}}(\lambda)\leq L_{\mathcal{N}}(\lambda)$ follows by the concavity of the $\log\det$ function and Jensen's inequality.
    To show the lower bound, 
    we first prove that $\frac{1}{2}$ is a lower bound of the ratio $\partial_i
    F(\lambda)/\partial_i L(\lambda)$, where we use
    $\partial_i\, \cdot$ as a shorthand for  $\frac{\partial}{\partial \lambda_i}$, the partial derivative  with respect to the
    $i$-th variable. 

   Let us start by computing the partial derivatives of $F$ and
    $L$ with respect to the $i$-th component. 
    Observe that
    \begin{displaymath}
        \partial_i P_\mathcal{N}^\lambda(S) = \left\{
            \begin{aligned}
                & P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})\;\textrm{if}\;
                i\in S, \\
                & - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\;\textrm{if}\;
                i\in \mathcal{N}\setminus S. \\
            \end{aligned}\right.
    \end{displaymath}
    Hence,
    \begin{displaymath}
        \partial_i F(\lambda) =
        \sum_{\substack{S\subseteq\mathcal{N}\\ i\in S}}
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)
        - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S).
    \end{displaymath}
    Now, using that every $S$ such that $i\in S$ can be uniquely written as
    $S'\cup\{i\}$, we can write:
    \begin{displaymath}
        \partial_i F(\lambda) =
        \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\big(V(S\cup\{i\})
        - V(S)\big).
    \end{displaymath}
    The marginal contribution of $i$ to
    $S$ can be written as 
\begin{align*}
V(S\cup \{i\}) - V(S)& =   \frac{1}{2}\log\det(I_d 
    + \T{X_S}X_S + x_i\T{x_i})
    - \frac{1}{2}\log\det(I_d + \T{X_S}X_S)\\
    &  = \frac{1}{2}\log\det(I_d + x_i\T{x_i}(I_d +
\T{X_S}X_S)^{-1})
 = \frac{1}{2}\log(1 + \T{x_i}A(S)^{-1}x_i)
\end{align*}
where $A(S) \defeq I_d+ \T{X_S}X_S$, and the last equality follows from the
Sylvester's determinant identity~\cite{sylvester}.
%  $  V(S\cup\{i\}) - V(S) = \frac{1}{2}\log\left(1 +  \T{x_i} A(S)^{-1}x_i\right)$.
Using this,
    \begin{displaymath}
        \partial_i F(\lambda) = \frac{1}{2}
        \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
        \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)
    \end{displaymath}
     The computation of the derivative of $L$ uses standard matrix
    calculus: writing $\tilde{A}(\lambda) = I_d+\sum_{i\in
    \mathcal{N}}\lambda_ix_i\T{x_i}$,
    \begin{displaymath}
        \det \tilde{A}(\lambda + h\cdot e_i) = \det\big(\tilde{A}(\lambda)
        + hx_i\T{x_i}\big)
         =\det \tilde{A}(\lambda)\big(1+
        h\T{x_i}\tilde{A}(\lambda)^{-1}x_i\big).
    \end{displaymath}
    Hence,
    \begin{displaymath}
       \log\det\tilde{A}(\lambda + h\cdot e_i)= \log\det\tilde{A}(\lambda)
        + h\T{x_i}\tilde{A}(\lambda)^{-1}x_i + o(h),
    \end{displaymath}
    which implies
    \begin{displaymath}
        \partial_i L(\lambda)
        =\frac{1}{2} \T{x_i}\tilde{A}(\lambda)^{-1}x_i.
    \end{displaymath}

For two symmetric matrices $A$ and $B$, we write $A\succ B$ ($A\succeq B$) if
$A-B$ is positive definite (positive semi-definite).  This order allows us to
define the notion of a \emph{decreasing} as well as  \emph{convex} matrix
function, similarly to their real counterparts. With this definition, matrix
inversion is decreasing and convex over symmetric positive definite
matrices (see Example 3.48 p. 110 in \cite{boyd2004convex}).
In particular,
\begin{gather*}
        \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1}
\end{gather*}
as $A(S)\preceq A(S\cup\{i\})$. Observe that since $1\leq \lambda_i\leq 1$, 
$P_{\mathcal{N}\setminus\{i\}}^\lambda(S) \geq P_\mathcal{N}^\lambda(S)$ and
$P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq P_{\mathcal{N}}^\lambda(S\cup\{i\})$
for all $S\subseteq\mathcal{N}\setminus\{i\}$. Hence,
\begin{align*}
    \partial_i F(\lambda) 
    & \geq \frac{1}{4}
    \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
    P_{\mathcal{N}}^\lambda(S)
    \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
    &\hspace{-3.5em}+\frac{1}{4}
    \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
    P_{\mathcal{N}}^\lambda(S\cup\{i\})
    \log\Big(1 + \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\
    &\geq \frac{1}{4}
    \sum_{S\subseteq\mathcal{N}}
    P_\mathcal{N}^\lambda(S)
    \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big).
\end{align*}
Using that $A(S)\succeq I_d$ we get that $\T{x_i}A(S)^{-1}x_i \leq
\norm{x_i}_2^2 \leq 1$. Moreover, $\log(1+x)\geq x$ for all $x\leq 1$.
Hence,
\begin{displaymath}
    \partial_i F(\lambda) \geq
    \frac{1}{4}
    \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i.
\end{displaymath}
Finally, using that the inverse is a matrix convex function over symmetric
positive definite matrices:
\begin{displaymath}
    \partial_i F(\lambda) \geq
    \frac{1}{4}
    \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i
    = \frac{1}{4}\T{x_i}\tilde{A}(\lambda)^{-1}x_i
    = \frac{1}{2}
    \partial_i L(\lambda).
\end{displaymath}

Having bound the ratio between the partial derivatives, we now bound the ratio
$F(\lambda)/L(\lambda)$ from below. Consider the following cases.

First, if the minimum is attained as $\lambda$ converges to zero in,
\emph{e.g.}, the $l_2$ norm, by the Taylor approximation, one can write:
\begin{displaymath}
    \frac{F(\lambda)}{L(\lambda)}
    \sim_{\lambda\rightarrow 0}
    \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F(0)}
    {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L(0)}
    \geq \frac{1}{2},
\end{displaymath}
\emph{i.e.}, the ratio $\frac{F(\lambda)}{L(\lambda)}$ is necessarily bounded
from below by 1/2 for small enough $\lambda$.

Second, if the minimum of the ratio $F(\lambda)/L(\lambda)$ is attained at
a vertex of the hypercube $[0,1]^n$ different from 0. $F$ and $L$ being
relaxations of the value function $V$, they are equal to $V$ on the vertices
which are exactly the binary points. Hence, the minimum is equal to 1 in this
case; in particular, it is greater than $1/2$.

Finally, if the minimum is attained at a point $\lambda^*$ with at least one
coordinate belonging to $(0,1)$, let $i$ be one such coordinate and consider
the function $G_i$:
\begin{displaymath}
    G_i: x \mapsto \frac{F}{L}(\lambda_1^*,\ldots,\lambda_{i-1}^*, x,
    \lambda_{i+1}^*, \ldots, \lambda_n^*).
\end{displaymath}
Then this function attains a minimum at $\lambda^*_i\in(0,1)$ and its
derivative is zero at this point. Hence:
\begin{displaymath}
    0 = G_i'(\lambda^*_i) = \partial_i\left(\frac{F}{L}\right)(\lambda^*).
\end{displaymath}
But $\partial_i(F/L)(\lambda^*)=0$ implies that
\begin{displaymath}
    \frac{F(\lambda^*)}{L(\lambda^*)} = \frac{\partial_i
    F(\lambda^*)}{\partial_i L(\lambda^*)}\geq \frac{1}{2}
\end{displaymath}
using the lower bound on the ratio of the partial derivatives. This concludes
the proof of the lemma. \qed
%\end{proof}

%We now prove that $F$ admits the following exchange property: let $\lambda$ be a feasible element of $[0,1]^n$, it is possible to trade one fractional component of $\lambda$ for another until one of them becomes integral, obtaining a new element $\tilde{\lambda}$ which is both feasible and for which $F(\tilde{\lambda})\geq F(\lambda)$. Here, by feasibility of a point $\lambda$, we mean that it satisfies the budget constraint $\sum_{i=1}^n \lambda_i c_i \leq B$.  This rounding property is referred to in the literature as \emph{cross-convexity} (see, \emph{e.g.}, \cite{dughmi}), or $\varepsilon$-convexity by \citeN{pipage}.

%\begin{lemma}[Rounding]\label{lemma:rounding}
%    For any feasible $\lambda\in[0,1]^{n}$, there exists a feasible
%    $\bar{\lambda}\in[0,1]^{n}$ such that at most one of its components is
%    fractional %, that is, lies in $(0,1)$ and:
%     and $F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda})$.
%\end{lemma}
\subsection{Proof of Lemma~\ref{lemma:rounding}}\label{proofoflemmarounding}
%\begin{proof}
    We give a rounding procedure which, given a feasible $\lambda$ with at least
    two fractional components, returns some feasible $\lambda'$ with one less fractional
    component such that $F(\lambda) \leq F(\lambda')$.

    Applying this procedure recursively yields the lemma's result.
    Let us consider such a feasible $\lambda$. Let $i$ and $j$ be two
    fractional components of $\lambda$ and let us define the following
    function:
    \begin{displaymath}
        F_\lambda(\varepsilon) = F(\lambda_\varepsilon)
        \quad\textrm{where} \quad
        \lambda_\varepsilon = \lambda + \varepsilon\left(e_i-\frac{c_i}{c_j}e_j\right)
    \end{displaymath}
    It is easy to see that if $\lambda$ is feasible, then:
    \begin{equation}\label{eq:convex-interval}
        \forall\varepsilon\in\Big[\max\Big(-\lambda_i,(\lambda_j-1)\frac{c_j}{c_i}\Big), \min\Big(1-\lambda_i, \lambda_j
        \frac{c_j}{c_i}\Big)\Big],\;
            \lambda_\varepsilon\;\;\textrm{is feasible}
    \end{equation}
    Furthermore, the function $F_\lambda$ is convex; indeed:
    \begin{align*}
        F_\lambda(\varepsilon)
        & = \mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[
        (\lambda_i+\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i,j\})\\
        & + (\lambda_i+\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i\})
         + (1-\lambda_i-\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{j\})\\
         & + (1-\lambda_i-\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S')\Big]
    \end{align*}
    Thus, $F_\lambda$ is a degree 2 polynomial whose dominant coefficient is:
    \begin{displaymath}
        \frac{c_i}{c_j}\mathbb{E}_{S'\sim
        P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[
            V(S'\cup\{i\})+V(S'\cup\{i\})\\
        -V(S'\cup\{i,j\})-V(S')\Big]
    \end{displaymath}
    which is positive by submodularity of $V$. Hence, the maximum of
    $F_\lambda$ over the interval given in \eqref{eq:convex-interval} is
    attained at one of its limit, at which either the $i$-th or $j$-th component of
    $\lambda_\varepsilon$ becomes integral. \qed
%\end{proof}
\subsection{Proof of Proposition~\ref{prop:relaxation}}\label{proofofproprelaxation}
The lower bound on $L^*_c$ follows immediately from the fact that $L$ extends $V$ to $[0,1]^n$. For the upper bound, let us consider a feasible point $\lambda^*\in \dom_c$ such that
$L(\lambda^*) = L^*_c$. By applying Lemma~\ref{lemma:relaxation-ratio} and
Lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
one fractional component such that
\begin{equation}\label{eq:e1}
    L(\lambda^*) \leq 2 F(\bar{\lambda}).
\end{equation}
    Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$
    denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$.
    By definition of the multi-linear extension $F$:
    \begin{displaymath}
        F(\bar{\lambda}) = (1-\lambda_i)V(S) +\lambda_i V(S\cup\{i\}).
    \end{displaymath}
    By submodularity of $V$, $V(S\cup\{i\})\leq V(S) + V(\{i\})$. Hence,
    \begin{displaymath}
        F(\bar{\lambda}) \leq V(S) + V(i).
    \end{displaymath}
    Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and
    $V(S)\leq OPT$. Hence,
    \begin{equation}\label{eq:e2}
        F(\bar{\lambda}) \leq  OPT + \max_{i\in\mathcal{N}} V(i).
    \end{equation}
Together, \eqref{eq:e1} and \eqref{eq:e2} imply the proposition.\qed

\section{Proof of Proposition~\ref{prop:monotonicity}}\label{proofofpropmonotonicity}

%The $\log\det$ function is concave and self-concordant (see
%\cite{boyd2004convex}), in this case, the analysis of the barrier method in
%in \cite{boyd2004convex} (Section 11.5.5) can be summarized in the following
%lemma:

%\begin{lemma}\label{lemma:barrier}
%For any $\varepsilon>0$, the barrier method computes an $\varepsilon$-accurate
%approximation of $L^*_c$ in time $O(poly(n,d,\log\log\varepsilon^{-1})$.
%\end{lemma}
We proceed by showing that the optimal value of \eqref{eq:perturbed-primal} is close to the
optimal value of \eqref{eq:primal} (Lemma~\ref{lemma:proximity}) while being
well-behaved with respect to changes of the cost
(Lemma~\ref{lemma:monotonicity}). These lemmas together imply
Proposition~\ref{prop:monotonicity}.

Note that the choice of $\alpha$ given in Algorithm~\ref{alg:monotone} implies
that $\alpha<\frac{1}{n}$. This in turn implies that the feasible set
$\mathcal{D}_{c, \alpha}$ of \eqref{eq:perturbed-primal} is non-empty: it
contains the strictly feasible point $\lambda=(\frac{1}{n},\ldots,\frac{1}{n})$.

\begin{lemma}\label{lemma:derivative-bounds}
    Let $\partial_i L(\lambda)$ denote the $i$-th derivative of $L$, for $i\in\{1,\ldots, n\}$, then:
    \begin{displaymath}
        \forall\lambda\in[0, 1]^n,\;\frac{b}{2^n} \leq \partial_i L(\lambda) \leq 1
    \end{displaymath}
\end{lemma}

\begin{proof}
    Recall that we had defined:
    \begin{displaymath}
        \tilde{A}(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i}
        \quad\mathrm{and}\quad
        A(S) \defeq I_d + \sum_{i\in S} x_i\T{x_i}
    \end{displaymath}
    Let us also define $A_k\defeq A(\{x_1,\ldots,x_k\})$.
    We have $\partial_i L(\lambda) = \T{x_i}\tilde{A}(\lambda)^{-1}x_i$. Since
    $\tilde{A}(\lambda)\succeq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which
    is the right-hand side  of the lemma.
    For the left-hand side, note that $\tilde{A}(\lambda) \preceq A_n$. Hence
    $\partial_iL(\lambda)\geq \T{x_i}A_n^{-1}x_i$.
    Using the Sherman-Morrison formula, for all $k\geq 1$:
    \begin{displaymath}
        \T{x_i}A_k^{-1} x_i = \T{x_i}A_{k-1}^{-1}x_i 
        - \frac{(\T{x_i}A_{k-1}^{-1}x_k)^2}{1+\T{x_k}A_{k-1}^{-1}x_k}
    \end{displaymath}
    By the Cauchy-Schwarz inequality:
    \begin{displaymath}
        (\T{x_i}A_{k-1}^{-1}x_k)^2 \leq \T{x_i}A_{k-1}^{-1}x_i\;\T{x_k}A_{k-1}^{-1}x_k
    \end{displaymath}
    Hence:
    \begin{displaymath}
        \T{x_i}A_k^{-1} x_i \geq \T{x_i}A_{k-1}^{-1}x_i 
        - \T{x_i}A_{k-1}^{-1}x_i\frac{\T{x_k}A_{k-1}^{-1}x_k}{1+\T{x_k}A_{k-1}^{-1}x_k}
    \end{displaymath}
    But $\T{x_k}A_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if
    $0\leq a\leq 1$, so:
    \begin{displaymath}
        \T{x_i}A_{k}^{-1}x_i \geq \T{x_i}A_{k-1}^{-1}x_i
        - \frac{1}{2}\T{x_i}A_{k-1}^{-1}x_i\geq \frac{\T{x_i}A_{k-1}^{-1}x_i}{2}
    \end{displaymath}
    By induction:
    \begin{displaymath}
        \T{x_i}A_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n}
    \end{displaymath}
    Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side
    of the lemma's inequality.
\end{proof}
Let us introduce the Lagrangian of problem \eqref{eq:perturbed-primal}:

\begin{displaymath}
    \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \defeq L(\lambda) 
    + \T{\mu}(\lambda-\alpha\mathbf{1}) + \T{\nu}(\mathbf{1}-\lambda) + \xi(B-\T{c}\lambda)
\end{displaymath}
so that:
\begin{displaymath}
    L^*_{c,\alpha} = \min_{\mu, \nu, \xi\geq 0}\max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi)
\end{displaymath}
Similarly, we define $\mathcal{L}_{c}\defeq\mathcal{L}_{c, 0}$ the lagrangian of \eqref{eq:primal}.

Let $\lambda^*$ be primal optimal for \eqref{eq:perturbed-primal}, and $(\mu^*,
\nu^*, \xi^*)$ be dual optimal for the same problem. In addition to primal and
dual feasibility, the KKT conditions give $\forall i\in\{1, \ldots, n\}$:
\begin{gather*}
    \partial_i L(\lambda^*) + \mu_i^* - \nu_i^* - \xi^* c_i = 0\\
    \mu_i^*(\lambda_i^* - \alpha) = 0\\
    \nu_i^*(1 - \lambda_i^*) = 0
\end{gather*}

\begin{lemma}\label{lemma:proximity}
We have:
\begin{displaymath}
    L^*_c - \alpha n^2\leq L^*_{c,\alpha} \leq L^*_c
\end{displaymath}
In particular, $|L^*_c - L^*_{c,\alpha}| \leq \alpha n^2$.
\end{lemma}

\begin{proof}
    $\alpha\mapsto L^*_{c,\alpha}$ is a decreasing function as it is the
    maximum value of the $L$ function over a set-decreasing domain, which gives
    the rightmost inequality.

    Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c, \alpha})$, that is:
    \begin{displaymath}
        L^*_{c,\alpha} = \max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*)
    \end{displaymath}

    Note that $\mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*)
    = \mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*)
    - \alpha\T{\mathbf{1}}\mu^*$, and that for any $\lambda$ feasible for
    problem \eqref{eq:primal}, $\mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*)
    \geq L(\lambda)$. Hence,
    \begin{displaymath}
        L^*_{c,\alpha} \geq L(\lambda) - \alpha\T{\mathbf{1}}\mu^*
    \end{displaymath}
    for any $\lambda$ feasible for \eqref{eq:primal}. In particular, for $\lambda$ primal optimal for $\eqref{eq:primal}$:
    \begin{equation}\label{eq:local-1}
        L^*_{c,\alpha} \geq L^*_c - \alpha\T{\mathbf{1}}\mu^*
    \end{equation}

    Let us denote by the $M$ the support of $\mu^*$, that is $M\defeq
    \{i|\mu_i^* > 0\}$, and by $\lambda^*$ a primal optimal point for
    $\eqref{eq:perturbed-primal}$.  From the KKT conditions we see that:
    \begin{displaymath}
        M \subseteq \{i|\lambda_i^* = \alpha\}
    \end{displaymath}


    Let us first assume that $|M| = 0$, then $\T{\mathbf{1}}\mu^*=0$ and the lemma follows.

    We will now assume that $|M|\geq 1$. In this case $\T{c}\lambda^*
    = B$, otherwise we could increase the coordinates of $\lambda^*$ in $M$,
    which would increase the value of the objective function and contradict the
    optimality of $\lambda^*$. Note also, that $|M|\leq n-1$, otherwise, since
    $\alpha< \frac{1}{n}$, we would have $\T{c}\lambda^*\ < B$, which again
    contradicts the optimality of $\lambda^*$. Let us write:
    \begin{displaymath}
        B = \T{c}\lambda^* = \alpha\sum_{i\in M}c_i + \sum_{i\in \bar{M}}\lambda_i^*c_i
        \leq \alpha |M|B + (n-|M|)\max_{i\in \bar{M}} c_i
    \end{displaymath}
    That is:
    \begin{equation}\label{local-2}
        \max_{i\in\bar{M}} c_i \geq \frac{B - B|M|\alpha}{n-|M|}> \frac{B}{n}
    \end{equation}
    where the last inequality uses again that $\alpha<\frac{1}{n}$. From the
    KKT conditions, we see that for $i\in M$, $\nu_i^* = 0$ and:
    \begin{equation}\label{local-3}
        \mu_i^* = \xi^*c_i - \partial_i L(\lambda^*)\leq \xi^*c_i\leq \xi^*B
    \end{equation}
    since $\partial_i L(\lambda^*)\geq 0$ and $c_i\leq 1$.

    Furthermore, using the KKT conditions again, we have that:
    \begin{equation}\label{local-4}
        \xi^* \leq \inf_{i\in \bar{M}}\frac{\partial_i L(\lambda^*)}{c_i}\leq \inf_{i\in \bar{M}} \frac{1}{c_i}
        = \frac{1}{\max_{i\in\bar{M}} c_i}
    \end{equation}
    where the last inequality uses Lemma~\ref{lemma:derivative-bounds}.

    Combining \eqref{local-2}, \eqref{local-3} and \eqref{local-4}, we get that:
    \begin{displaymath}
        \sum_{i\in M}\mu_i^* \leq |M|\xi^*B \leq n\xi^*B\leq \frac{nB}{\max_{i\in\bar{M}} c_i} \leq n^2
    \end{displaymath}
    
    This implies that:
    \begin{displaymath}
        \T{\mathbf{1}}\mu^* = \sum_{i=1}^n \mu^*_i = \sum_{i\in M}\mu_i^*\leq n^2
    \end{displaymath}
    which in addition to \eqref{eq:local-1} proves the lemma.
\end{proof} 

\begin{lemma}\label{lemma:monotonicity}
    If $c'$ = $(c_i', c_{-i})$, with $c_i'\leq c_i - \delta$, we have:
    \begin{displaymath}
        L^*_{c',\alpha} \geq L^*_{c,\alpha} + \frac{\alpha\delta b}{2^nB}
    \end{displaymath}
\end{lemma}

\begin{proof}
    Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c', \alpha})$. Noting that:
    \begin{displaymath} 
    \mathcal{L}_{c', \alpha}(\lambda, \mu^*, \nu^*, \xi^*) \geq
    \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + \lambda_i\xi^*\delta,
    \end{displaymath}
    we get similarly to Lemma~\ref{lemma:proximity}:
    \begin{displaymath}
        L^*_{c',\alpha} \geq L(\lambda) + \lambda_i\xi^*\delta
    \end{displaymath}
    for any $\lambda$ feasible for \eqref{eq:perturbed-primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:perturbed-primal}:
    \begin{displaymath}
        L^*_{c',\alpha} \geq L^*_{c,\alpha} + \alpha\xi^*\delta
    \end{displaymath}
    since $\lambda_i^*\geq \alpha$.

    Using the KKT conditions for $(P_{c', \alpha})$, we can write:
    \begin{displaymath}
        \xi^* = \inf_{i:\lambda^{'*}_i>\alpha} \frac{\T{x_i}S(\lambda^{'*})^{-1}x_i}{c_i'}
    \end{displaymath}
    with $\lambda^{'*}$ optimal for $(P_{c', \alpha})$. Since $c_i'\leq B$,
    using Lemma~\ref{lemma:derivative-bounds}, we get that $\xi^*\geq
    \frac{b}{2^nB}$, which concludes the proof.
\end{proof}

%\subsection*{End of the proof of Proposition~\ref{prop:monotonicity}}
We are now ready to conclude the  proof of Proposition~\ref{prop:monotonicity}.
Let $\hat{L}^*_{c,\alpha}$ be the approximation computed by
Algorithm~\ref{alg:monotone}.
\begin{enumerate}
    \item using Lemma~\ref{lemma:proximity}:
\begin{displaymath}
        |\hat{L}^*_{c,\alpha} - L^*_c| \leq |\hat{L}^*_{c,\alpha} - L^*_{c,\alpha}| + |L^*_{c,\alpha} - L^*_c|
        \leq \frac{\alpha\delta}{B} + \alpha n^2 = \varepsilon
\end{displaymath}
which proves the $\varepsilon$-accuracy.

\item for the $\delta$-decreasingness, let $c' = (c_i', c_{-i})$ with $c_i'\leq
    c_i-\delta$, then:
\begin{displaymath}
    \hat{L}^*_{c',\alpha} \geq L^*_{c',\alpha} - \frac{\alpha\delta b}{2^{n+1}B} 
                     \geq L^*_{c,\alpha} + \frac{\alpha\delta b}{2^{n+1}B}
    \geq \hat{L}^*_{c,\alpha}
\end{displaymath}
where the first and last inequalities follow from the accuracy of the approximation, and
the inner inequality follows from Lemma~\ref{lemma:monotonicity}.

\item the accuracy of the approximation $\hat{L}^*_{c,\alpha}$ is:
\begin{displaymath}
    A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2B)}
\end{displaymath}

Note that:
\begin{displaymath}
    \log\log A^{-1} = O\bigg(\log\log\frac{B}{\varepsilon\delta b} + \log n\bigg)
\end{displaymath}
Using Lemma~\ref{lemma:barrier} concludes the proof of the running time.\qed
\end{enumerate}

\section{Proof of Theorem~\ref{thm:main}}\label{sec:proofofmainthm}

We now present the proof of Theorem~\ref{thm:main}. We use the notation $OPT_{-i^*}$ to denote the optimal value of \EDP{} when the maximum value element $i^*$ is  excluded. We also use $OPT'_{-i^*}$ the approximation computed by the $\delta$-decreasing, $\epsilon$-accurate approximation of $L^*_{c_{-i^*}}$, as defined in Algorithm~\ref{mechanism}.

The properties of $\delta$-truthfulness and
individual rationality follow from $\delta$-monotonicity and threshold
payments. $\delta$-monotonicity and budget feasibility follow  similar steps as the
analysis of \citeN{chen}, adapted to account for $\delta$-monotonicity:
\begin{lemma}\label{lemma:monotone}
Our mechanism for \EDP{} is $\delta$-monotone and budget feasible.
\end{lemma}

\begin{proof}
    Consider an agent $i$ with cost $c_i$ that is
    selected by the mechanism, and suppose that she reports
    a cost $c_i'\leq c_i-\delta$ while all  other costs stay the same.
    Suppose that when $i$ reports $c_i$, $OPT'_{-i^*} \geq C V(i^*)$; then, as $s_i(c_i,c_{-i})=1$, $i\in S_G$.
     By reporting cost $c_i'$, $i$ may be selected at an earlier iteration of the greedy algorithm.
    %using the submodularity of $V$, we see that $i$ will satisfy the greedy
    %selection rule:
    %\begin{displaymath}
    %    i = \argmax_{j\in\mathcal{N}\setminus S} \frac{V(S\cup\{j\})
    %    - V(S)}{c_j}
    %\end{displaymath}
    %in an earlier iteration of the greedy heuristic.
 Denote by $S_i$
    (resp. $S_i'$) the set to which $i$ is added when reporting cost $c_i$
    (resp. $c_i'$). We have $S_i'\subseteq S_i$; in addition, $S_i'\subseteq S_G'$, the set selected by the greedy algorithm under $(c_i',c_{-i})$; if not, then greedy selection would terminate prior to selecting $i$ also when she reports $c_i$, a contradiction. Moreover, we have
    \begin{align*}
        c_i' & \leq c_i \leq
        \frac{B}{2}\frac{V(S_i\cup\{i\})-V(S_i)}{V(S_i\cup\{i\})}
         \leq \frac{B}{2}\frac{V(S_i'\cup\{i\})-V(S_i')}{V(S_i'\cup\{i\})}
    \end{align*}
    by the monotonicity and submodularity  of $V$. Hence  $i\in S_G'$. By
    $\delta$-decreasingness of
    $OPT'_{-i^*}$, under $c'_i\leq c_i-\delta$ the greedy set is still allocated and $s_i(c_i',c_{-i}) =1$.
    Suppose now that when $i$ reports $c_i$, $OPT'_{-i^*} < C V(i^*)$. Then $s_i(c_i,c_{-i})=1$ iff $i = i^*$. 
    Reporting $c_{i^*}'\leq c_{i^*}$ does not change $V(i^*)$ nor
    $OPT'_{-i^*} \leq C V(i^*)$; thus $s_{i^*}(c_{i^*}',c_{-i^*})=1$, so the mechanism is monotone.

To show budget feasibility, suppose that $OPT'_{-i^*} < C V(i^*)$. Then the mechanism selects $i^*$. Since the bid of $i^*$ does not affect the above condition, the threshold payment of $i^*$ is $B$ and the mechanism is budget feasible.
Suppose  that $OPT'_{-i^*} \geq C V(i^*)$. 
Denote by $S_G$ the set selected by the greedy algorithm, and for $i\in S_G$,  denote by
$S_i$ the subset of the solution set that was selected by the greedy algorithm just prior to the addition of $i$---both sets determined for the present cost vector $c$. 
%Chen \emph{et al.}~\cite{chen} show that, 
Then for any submodular function $V$, and for all $i\in S_G$:
%the reported cost of an agent selected by the greedy heuristic, and holds for
%any submodular function $V$:
\begin{equation}\label{eq:budget}
   \text{if}~c_i'\geq \frac{V(S_i\cup\{i\}) - V(S)}{V(S_G)} B~\text{then}~s_i(c_i',c_{-i})=0
\end{equation}
In other words, if $i$ increases her cost to a value higher than $\frac{V(S_i\cup\{i\}) - V(S)}{V(S_G)}$, she will cease to be in the selected set $S_G$. As a result,
\eqref{eq:budget}
implies that the threshold payment of user $i$ is bounded by the above quantity.
%\begin{displaymath}
%\frac{V(S_i\cup\{i\}) - V(S_i)}{V(S_G)} =  B
%\end{displaymath}
Hence, the total payment is bounded by the telescopic sum:
\begin{displaymath}
    \sum_{i\in S_G} \frac{V(S_i\cup\{i\}) - V(S_i)}{V(S_G)} B = \frac{V(S_G)-V(\emptyset)}{V(S_G)} B=B\qed
\end{displaymath}
\end{proof}

The complexity of the mechanism is given by the following lemma.

\begin{lemma}[Complexity]\label{lemma:complexity}
    For any $\varepsilon > 0$ and any $\delta>0$, the complexity of the mechanism  is
    $O\big(poly(n, d, \log\log\frac{B}{b\varepsilon\delta})\big)$
\end{lemma}

\begin{proof}
    The value function $V$ in \eqref{modified} can be computed in time
    $O(\text{poly}(n, d))$ and the mechanism only involves a linear
    number of queries to the function $V$. 

    By Proposition~\ref{prop:monotonicity}, line 3 of Algorithm~\ref{mechanism}
    can be computed in time
    $O(\text{poly}(n, d, \log\log \frac{B}{b\varepsilon\delta}))$. Hence the allocation
    function's complexity is as stated. 
    %Payments can be easily computed in time  $O(\text{poly}(n, d))$ as in prior work.
\junk{
    Using Singer's characterization of the threshold payments
    \cite{singer-mechanisms}, one can verify that they can be computed in time
    $O(\text{poly}(n, d))$.
    }
\end{proof}

Finally, we prove the approximation ratio of the mechanism.

We use the following lemma from \cite{chen} which bounds $OPT$ in terms of
the value of $S_G$, as computed in Algorithm \ref{mechanism}, and $i^*$, the
element of maximum value.

\begin{lemma}[\cite{chen}]\label{lemma:greedy-bound}
Let $S_G$ be the set computed in Algorithm \ref{mechanism} and let 
$i^*=\argmax_{i\in\mathcal{N}} V(\{i\})$. We have:
\begin{displaymath}
OPT \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big).
\end{displaymath}
\end{lemma}

Using Proposition~\ref{prop:relaxation} and~\ref{lemma:greedy-bound} we can complete the proof of
Theorem~\ref{thm:main} by showing that, for any $\varepsilon > 0$, if
$OPT_{-i}'$, the optimal value of $L$ when $i^*$ is excluded from
$\mathcal{N}$, has been computed to a precision $\varepsilon$, then the set
$S^*$ allocated by the mechanism is such that:
\begin{equation} \label{approxbound}
OPT
\leq \frac{10e\!-\!3 + \sqrt{64e^2\!-\!24e\!+\!9}}{2(e\!-\!1)} V(S^*)\!
+ \! \varepsilon .
\end{equation}
To see this, let $L^*_{-i^*}$ be the true maximum value of $L$ subject to
$\lambda_{i^*}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. From line
3 of Algorithm~\ref{mechanism}, we have
$L^*_{-i^*}-\varepsilon\leq OPT_{-i^*}' \leq L^*_{-i^*}+\varepsilon$.

If the condition on line 4 of the algorithm holds, then
\begin{displaymath}
    V(i^*) \geq \frac{1}{C}L^*_{-i^*}-\frac{\varepsilon}{C} \geq
    \frac{1}{C}OPT_{-i^*} -\frac{\varepsilon}{C}.
\end{displaymath}
Indeed, $L^*_{-i^*}\geq OPT_{-i^*}$ as $L$ is a fractional relaxation of $V$. Also, $OPT \leq OPT_{-i^*} + V(i^*)$,
hence,
\begin{equation}\label{eq:bound1}
    OPT\leq (1+C)V(i^*) + \varepsilon.
\end{equation}

If the condition  does not hold, by observing that $L^*_{-i^*}\leq L^*_c$ and
applying Proposition~\ref{prop:relaxation}, we get
\begin{displaymath}
    V(i^*)\leq \frac{1}{C}L^*_{-i^*} + \frac{\varepsilon}{C}
    \leq \frac{1}{C} \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}.
\end{displaymath}
Applying Lemma~\ref{lemma:greedy-bound},
\begin{displaymath}
    V(i^*) \leq \frac{1}{C}\left(\frac{2e}{e-1}\big(3 V(S_G)
    + 2 V(i^*)\big) + 2 V(i^*)\right) + \frac{\varepsilon}{C}.
\end{displaymath}
Thus, if $C$ is such that $C(e-1) -6e  +2 > 0$,
\begin{align*}
    V(i^*) \leq \frac{6e}{C(e-1)- 6e + 2} V(S_G) 
    + \frac{(e-1)\varepsilon}{C(e-1)- 6e + 2}.
\end{align*}
Finally, using Lemma~\ref{lemma:greedy-bound} again, we get
\begin{equation}\label{eq:bound2}
    OPT(V, \mathcal{N}, B) \leq 
    \frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e  +2}\right) V(S_G)
    + \frac{2e\varepsilon}{C(e-1)- 6e + 2}.
\end{equation}
To minimize the coefficients of $V_{i^*}$  and $V(S_G)$  in \eqref{eq:bound1}
and \eqref{eq:bound2} respectively, we wish to chose $C$ that minimizes
\begin{displaymath}
    \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e  +2}
            \right)\right).
\end{displaymath}
This function has two minima, only one of those is such that $C(e-1) -6e
+2 \geq 0$. This minimum is
\begin{equation}\label{eq:constant}
    C =  \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)}.
\end{equation}
For this minimum, $\frac{2e\varepsilon}{C^*(e-1)- 6e + 2}\leq \varepsilon.$
Placing the expression of $C$ in \eqref{eq:bound1} and \eqref{eq:bound2}
gives the approximation ratio in \eqref{approxbound}, and concludes the proof
of Theorem~\ref{thm:main}.\hspace*{\stretch{1}}\qed

\section{Proof of Theorem \ref{thm:lowerbound}}

Suppose, for contradiction, that such a mechanism exists. Consider two
experiments with dimension $d=2$, such that $x_1 = e_1=[1 ,0]$, $x_2=e_2=[0,1]$
and $c_1=c_2=B/2+\epsilon$. Then, one of the two experiments, say, $x_1$, must
be in the set selected by the mechanism, otherwise the ratio is unbounded,
a contradiction. If $x_1$ lowers its value to $B/2-\epsilon$, by monotonicity
it remains in the solution; by  threshold payment, it is paid at least
$B/2+\epsilon$. So $x_2$ is not included in the solution by budget feasibility
and individual rationality: hence, the selected set attains a value $\log2$,
while the optimal value is $2\log 2$.\hspace*{\stretch{1}}\qed