summaryrefslogtreecommitdiffstats
path: root/proof.tex
blob: af8bbb2c3f54ec499ecfe34a88c0766cdc3470b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
\documentclass{acm_proc_article-sp}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,amsfonts}
\usepackage{algorithm}
\usepackage{algpseudocode}
\newtheorem{lemma}{Lemma}
\newtheorem{fact}{Fact}
\newtheorem{example}{Example}
\newtheorem{prop}{Proposition}
\newtheorem{theorem}{Theorem}
\newcommand{\var}{\mathop{\mathrm{Var}}}
\newcommand{\condexp}[2]{\mathop{\mathbb{E}}\left[#1|#2\right]}
\newcommand{\expt}[1]{\mathop{\mathbb{E}}\left[#1\right]}
\newcommand{\norm}[1]{\lVert#1\rVert}
\newcommand{\tr}[1]{#1^*}
\newcommand{\ip}[2]{\langle #1, #2 \rangle}
\newcommand{\mse}{\mathop{\mathrm{MSE}}}
\DeclareMathOperator{\trace}{tr}
\DeclareMathOperator*{\argmax}{arg\,max}
\begin{document}

\section{Budget feasible mechanism}

\subsection{Data model}
\begin{itemize}
    \item set of $n$ users $\mathcal{N} = \{1,\ldots, n\}$
    \item each user has a public vector of features $x_i\in\mathbf{R}^d$ and some
        undisclosed variable $y_i\in\mathbf{R}$
    \item \textbf{Ridge regression model:}
        \begin{itemize}
            \item $y_i = \beta^*x_i + \varepsilon_i$
            \item $\varepsilon_i \sim \mathcal{N}(0,\sigma^2)$, 
                $(\varepsilon_i)_{i\in \mathcal{N}}$ are mutually independent.
            \item prior knowledge of $\beta$: $\beta\sim\mathcal{N}(0,\kappa I_d)$
        \end{itemize}
\end{itemize}

\subsection{Economics}

\begin{itemize}
    \item Value function:
        \begin{align*}
            \forall S\subset\mathcal{N},\; V(S)
            & = \frac{1}{2}\log\det\left(I_d
                    + \frac{\kappa}{\sigma^2}\sum_{i\in S} x_ix_i^*\right)\\
            & = \frac{1}{2}\log\det X(S)
        \end{align*}
    \item each user $i$ has a cost $c_i$
    \item the auctioneer has a budget constraint $B$
    \item optimisation problem:
        \begin{displaymath}
            OPT(V,\mathcal{N}, B) = \max_{S\subset\mathcal{N}} \left\{ V(S)\,|\,
            \sum_{i\in S}c_i\leq B\right\}
        \end{displaymath}
\end{itemize}

\subsection{Relaxations of the value function}

We say that $R_\mathcal{N}:[0,1]^n\rightarrow\mathbf{R}$ is a relaxation of the
value function $V$ over $\mathcal{N}$ if it coincides with $V$ at binary
points. Formally, for any $S\subset\mathcal{N}$, let $\mathbf{1}_S$ denote the
indicator vector of $S$. $R_\mathcal{N}$ is a relaxation of $V$ over
$\mathcal{N}$ iff:
\begin{displaymath}
    \forall S\subset\mathcal{N},\; R_\mathcal{N}(\mathbf{1}_S) = V(S)
\end{displaymath}

We can extend the optimisation problem defined above to a relaxation by
extending the cost function:
\begin{displaymath}
    \forall \lambda\in[0,1]^n,\; c(\lambda)
    = \sum_{i\in\mathcal{N}}\lambda_ic_i
\end{displaymath}
The optimisation problem becomes:
\begin{displaymath}
    OPT(R_\mathcal{N}, B) =
    \max_{\lambda\in[0,1]^n}\left\{R_\mathcal{N}(\lambda)\,|\, c(\lambda)\leq B\right\}
\end{displaymath}
The relaxations we will consider here rely on defining a probability
distribution over subsets of $\mathcal{N}$.

Let $\lambda\in[0,1]^n$, let us define:
\begin{displaymath}
    P_\mathcal{N}(S,\lambda) = \prod_{i\in S}\lambda_i
    \prod_{i\in\mathcal{N}\setminus S}(1-\lambda_i)
\end{displaymath}
$P_{\mathcal{N}}(S,\lambda)$ is the probability of picking the set $S$ if we select
a subset of $\mathcal{N}$ at random by deciding independently for each point to
include it in the set with probability $\lambda_i$ (and to exclude it with
probability $1-\lambda_i$).

We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\begin{itemize}
    \item the \emph{multi-linear extension} of $V$:
        \begin{align*}
            F_\mathcal{N}(\lambda) 
            & = \mathbb{E}_{S\sim P_\mathcal{N}(S,\lambda)}\big[\log\det X(S)\big]\\
            & = \sum_{S\subset\mathcal{N}} P_\mathcal{N}(S,\lambda) V(S)\\
            & = \sum_{S\subset\mathcal{N}} P_{\mathcal{N}}(S,\lambda) \log\det X(S)\\
        \end{align*}
    \item the \emph{concave relaxation} of $V$:
        \begin{align*}
            L_{\mathcal{N}}(\lambda) 
            & = \log\det \mathbb{E}_{S\sim P_\mathcal{N}(S,\lambda)}\big[X(S)\big]\\
            & = \log\det\left(\sum_{S\subset N}
                P_\mathcal{N}(S,\lambda)X(S)\right)\\
                & = \log\det \tilde{X}(\lambda)\\
            & = \log\det\left(I_d
                + \frac{\kappa}{\sigma^2}\sum_{i\in\mathcal{N}}
                    \lambda_ix_ix_i^*\right)
        \end{align*}
\end{itemize}

\begin{lemma}
    The \emph{concave relaxation} $L_\mathcal{N}$ is concave\footnote{Hence
    this relaxation is well-named!}.
\end{lemma}

\begin{proof}
    This follows almost immediately from the concavity of the $\log\det$
    function over symmetric positive semi-definite matrices. More precisely, if
    $A$ and $B$ are two symmetric positive semi-definite matrices, then:
    \begin{multline*}
        \forall\alpha\in [0, 1],\; \log\det\big(\alpha A + (1-\alpha) B\big)\\
        \geq \alpha\log\det A + (1-\alpha)\log\det B
    \end{multline*}
\end{proof}

\begin{lemma}[Rounding]\label{lemma:rounding}
    For any feasible $\lambda\in[0,1]^n$, there exists a feasible
    $\bar{\lambda}\in[0,1]^n$ such that at most one of its component is
    fractional, that is, lies in $(0,1)$ and:
    \begin{displaymath}
        F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda})
    \end{displaymath}
\end{lemma}

\begin{proof}
    We give a rounding procedure which given a feasible $\lambda$ with at least
    two fractional components, returns some $\lambda'$ with one less fractional
    component, feasible such that:
    \begin{displaymath}
        F(\lambda) \leq F(\lambda')
    \end{displaymath}
    Applying this procedure recursively yields the lemma's result.

    Let us consider such a feasible $\lambda$. Let $i$ and $j$ be two
    fractional components of $\lambda$ and let us define the following
    function:
    \begin{displaymath}
        F_\lambda(\varepsilon) = F(\lambda_\varepsilon)
        \quad\textrm{where} \quad
        \lambda_\varepsilon = \lambda + \varepsilon\left(e_i-\frac{c_i}{c_j}e_j\right)
    \end{displaymath}

    It is easy to see that if $\lambda$ is feasible, then:
    \begin{multline}\label{eq:convex-interval}
        \forall\varepsilon\in\Big[\max\Big(-\lambda_i,(\lambda_j-1)\frac{c_j}{c_i}\Big), \min\Big(1-\lambda_i, \lambda_j
        \frac{c_j}{c_i}\Big)\Big],\;\\
            \lambda_\varepsilon\;\;\textrm{is feasible}
    \end{multline}

    Furthermore, the function $F_\lambda$ is convex, indeed:
    \begin{align*}
        F_\lambda(\varepsilon)
        & = \mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}(S',\lambda)}\Big[
        (\lambda_i+\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i,j\})\\
        & + (\lambda_i+\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i\})\\
        & + (1-\lambda_i-\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{j\})\\
        & + (1-\lambda_i-\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S')\Big]\\
    \end{align*}
    Thus, $F_\lambda$ is a degree 2 polynomial whose dominant coefficient is:
    \begin{multline*}
        \frac{c_i}{c_j}\mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}(S',\lambda)}\Big[
            V(S'\cup\{i\})+V(S'\cup\{i\})\\
        -V(S'\cup\{i,j\})-V(S')\Big]
    \end{multline*}
    which is positive by submodularity of $V$. Hence, the maximum of
    $F_\lambda$ over the interval given in \eqref{eq:convex-interval} is
    attained at one of its limit, at which either the $i$-th or $j$-th component of
    $\lambda_\varepsilon$ becomes integral.
\end{proof}

\begin{lemma}\label{lemma:relaxation-ratio}
    The following inequality holds:
    \begin{displaymath}
        \forall\lambda\in[0,1]^n,\; 
        \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
        \,L_\mathcal{N}(\lambda)\leq
        F_\mathcal{N}(\lambda)\leq L_{\mathcal{N}}(\lambda)
    \end{displaymath}
\end{lemma}

\begin{proof}

    We will prove that:
    \begin{displaymath}
        \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
    \end{displaymath}
    is a lower bound of the ratio $\partial_i F_\mathcal{N}(\lambda)/\partial_i
    L_\mathcal{N}(\lambda)$.

    This will be enough to conclude, by observing that:
    \begin{displaymath}
        \frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
        \sim_{\lambda\rightarrow 0}
        \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F_\mathcal{N}(0)}
        {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L_\mathcal{N}(0)}
    \end{displaymath}
    and that an interior critical point of the ratio
    $F_\mathcal{N}(\lambda)/L_\mathcal{N}(\lambda)$ is defined by:
    \begin{displaymath}
        \frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
        = \frac{\partial_i F_\mathcal{N}(\lambda)}{\partial_i
        L_\mathcal{N}(\lambda)}
    \end{displaymath}

    Let us start by computing the derivatives of $F_\mathcal{N}$ and
    $L_\mathcal{N}$ with respect to
    the $i$-th component.

    For $F$, it suffices to look at the derivative of
    $P_\mathcal{N}(S,\lambda)$:
    \begin{displaymath}
        \partial_i P_\mathcal{N}(S,\lambda) = \left\{
            \begin{aligned}
                & P_{\mathcal{N}\setminus\{i\}}(S\setminus\{i\},\lambda)\;\textrm{if}\; i\in S \\
                & - P_{\mathcal{N}\setminus\{i\}}(S,\lambda)\;\textrm{if}\;
                i\in \mathcal{N}\setminus S \\
            \end{aligned}\right.
    \end{displaymath}

    Hence:
    \begin{multline*}
        \partial_i F_\mathcal{N} =
        \sum_{\substack{S\subset\mathcal{N}\\ i\in S}}
        P_{\mathcal{N}\setminus\{i\}}(S\setminus\{i\},\lambda)V(S)\\
        - \sum_{\substack{S\subset\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
        P_{\mathcal{N}\setminus\{i\}}(S,\lambda)V(S)\\
    \end{multline*}

    Now, using that every $S$ such that $i\in S$ can be uniquely written as
    $S'\cup\{i\}$, we can write:
    \begin{multline*}
        \partial_i F_\mathcal{N} =
        \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
        P_{\mathcal{N}\setminus\{i\}}(S,\lambda)V(S\cup\{i\})\\
        - \sum_{\substack{S\subset\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
        P_{\mathcal{N}\setminus\{i\}}(S,\lambda)V(S)\\
    \end{multline*}

    Finally, by using the expression for the marginal contribution of $i$ to
    $S$:
    \begin{displaymath}
        \partial_i F_\mathcal{N}(\lambda) = 
        \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
        P_{\mathcal{N}\setminus\{i\}}(S,\lambda)
        \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)
    \end{displaymath}

    The computation of the derivative of $L_\mathcal{N}$ uses standard matrix
    calculus and gives:
    \begin{displaymath}
        \partial_i L_\mathcal{N}(\lambda)
        = \frac{\kappa}{\sigma^2}x_i^* \tilde{X}(\lambda)^{-1}x_i
    \end{displaymath}
    
    Using the following inequalities:
    \begin{gather*}
        P_{\mathcal{N}\setminus\{i\}}(S,\lambda) \geq
        P_\mathcal{N}(S,\lambda)\\
        X(S)^{-1} \geq X(S\cup\{i\})^{-1}\\
        P_\mathcal{N}(S\cup\{i\},\lambda)\geq P_\mathcal{N}(S,\lambda)
    \end{gather*}
    we get:
    \begin{align*}
        \partial_i F_\mathcal{N}(\lambda) 
        & \geq \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
        P_\mathcal{N}(S,\lambda)
        \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)\\
        & \geq \frac{1}{2}
        \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
        P_\mathcal{N}(S,\lambda)
        \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)\\
        &\hspace{-3.5em}+\frac{1}{2}
        \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
        P_\mathcal{N}(S\cup\{i\},\lambda)
        \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S\cup\{i\})^{-1}x_i\Big)\\
        &\geq \frac{1}{2}
        \sum_{S\subset\mathcal{N}}
        P_\mathcal{N}(S,\lambda)
        \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)\\
    \end{align*}

    Using that $X(S)\geq I_d$ we get that:
    \begin{displaymath}
        \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i \leq \frac{\kappa}{\sigma^2}
    \end{displaymath}
    
    Moreover:
    \begin{displaymath}
        \forall x\leq\frac{\kappa}{\sigma^2},\; \log(1+x)\geq
    \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{\frac{\kappa}{\sigma^2}} x
    \end{displaymath}

    Hence:
    \begin{displaymath}
        \partial_i F_\mathcal{N}(\lambda) \geq
        \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
        x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}(S,\lambda)X(S)^{-1}\bigg)x_i
    \end{displaymath}
    
    Finally, using that the inverse is a matrix convex function over symmetric
    positive definite matrices:
    \begin{align*}
        \partial_i F_\mathcal{N}(\lambda) &\geq
        \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
        x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}(S,\lambda)X(S)\bigg)^{-1}x_i\\
        & \geq \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
        \partial_i L_\mathcal{N}(\lambda)
    \end{align*}
\end{proof}

\begin{lemma}
    \begin{displaymath}
        OPT(L_\mathcal{N}, B) \leq \frac{1}{C_\kappa}\big(2 OPT(V,\mathcal{N},B)
        + \max_{i\in\mathcal{N}}V(i)\big)
    \end{displaymath}
\end{lemma}

\begin{proof}
    Let us consider a feasible point $\lambda^*\in[0,1]^n$ such that $L_\mathcal{N}(\lambda^*)
    = OPT(L_\mathcal{N}, B)$. By applying lemma~\ref{lemma:relaxation-ratio}
    and lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
    one fractional component such that:
    \begin{equation}\label{eq:e1}
        L_\mathcal{N}(\lambda^*) \leq \frac{1}{C_\kappa}
        F_\mathcal{N}(\bar{\lambda})
    \end{equation}

    Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$
    denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$.
    Using the fact that $F_\mathcal{N}$ is linear with respect to the $i$-th
    component and is a relaxation of the value function, we get:
    \begin{displaymath}
        F_\mathcal{N}(\bar{\lambda}) = V(S) +\lambda_i V(S\cup\{i\})
    \end{displaymath}

    Using the submodularity of $V$:
    \begin{displaymath}
        F_\mathcal{N}(\bar{\lambda}) \leq 2 V(S) + V(i)
    \end{displaymath}

    Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and
    $V(S)\leq OPT(V,\mathcal{N}, B)$. Hence:
    \begin{equation}\label{eq:e2}
        F_\mathcal{N}(\bar{\lambda}) \leq 2 OPT(V,\mathcal{N}, B)
        + \max_{i\in\mathcal{N}} V(i)
    \end{equation}

    Putting \eqref{eq:e1} and \eqref{eq:e2} together gives the results.
\end{proof}

\begin{algorithm}
    \caption{Budget feasible mechanism for ridge regression}
    \begin{algorithmic}[1]
    \State $i^* \gets \argmax_{j\in\mathcal{N}}V(j)$
    \State $x^* \gets \argmax_{x\in[0,1]^n} \{L_{\mathcal{N}\setminus\{i^*\}}(x)
                                    \,|\, c(x)\leq B\}$
        \Statex
        \If{$L(x^*) < CV(i^*)$}
            \State \textbf{return} $\{i^*\}$
        \Else
            \State $i \gets \argmax_{1\leq j\leq n}\frac{V(j)}{c_j}$
            \State $S \gets \emptyset$
            \While{$c_i\leq \frac{B}{2}\frac{V(S\cup\{i\})-V(S)}{V(S\cup\{i\})}$}
                \State $S \gets S\cup\{i\}$
                \State $i \gets \argmax_{j\in\mathcal{N}\setminus S}
                \frac{V(S\cup\{j\})-V(S)}{c_j}$
            \EndWhile
            \State \textbf{return} $S$
        \EndIf
    \end{algorithmic}
\end{algorithm}

\begin{lemma}
The mechanism is monotone.
\end{lemma}

\begin{lemma}
The mechanism is budget feasible.
\end{lemma}

\begin{lemma}
    Let us denote by $S_M$ the set returned by the mechanism. Then:
    \begin{displaymath}
        V(S_M) \geq ?\cdot OPT(V, \mathcal{N}, B)
    \end{displaymath}
\end{lemma}

\begin{proof}

    If the condition on line 3 of the algorithm holds, then:
    \begin{displaymath}
        V(i^*) \geq \frac{1}{C}L(x^*) \geq
        \frac{1}{C}OPT(V,\mathcal{N}\setminus\{i\}, B)
    \end{displaymath}

    But:
    \begin{displaymath}
        OPT(V,\mathcal{N},B) \leq OPT(V,\mathcal{N}\setminus\{i\}, B) + V(i^*)
    \end{displaymath}

    Hence:
    \begin{displaymath}
        V(i^*) \geq \frac{1}{C+1} OPT(V,\mathcal{N}, B)
    \end{displaymath}

    If the condition of the algorithm does not hold:
    \begin{align*}
        V(i^*) & \leq \frac{1}{C}L(x^*) \leq \frac{1}{C\cdot C_\kappa}
        \big(2 OPT(V,\mathcal{N}, B) + V(i^*)\big)\\
        & \leq \frac{1}{C\cdot C_\kappa}\left(\frac{2e}{e-1}\big(3 V(S_M)
        + 2 V(i^*)\big)
        + V(i^*)\right)
    \end{align*}
    
    Thus:
    \begin{align*}
        V(i^*) \leq \frac{6e}{C\cdot C_\kappa(e-1)- 5e + 1} V(S_M)
    \end{align*}

    Finally, using again that:
    \begin{displaymath}
        OPT(V,\mathcal{N},B) \leq \frac{e}{e-1}\big(3 V(S_M) + 2 V(i^*)\big)
    \end{displaymath}
    
    We get:
    \begin{displaymath}
        OPT(V, \mathcal{N}, B) \leq \frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot
        C_\kappa(e-1) -5e  +1}\right) V(S_M)
    \end{displaymath}
\end{proof}

\begin{theorem}
    The mechanism is individually rational, truthful and has an approximation
    ratio of
\end{theorem}
\end{document}