1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
|
/** @fileOverview Javascript cryptography implementation.
*
* Crush to remove comments, shorten variable names and
* generally reduce transmission size.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
"use strict";
/*jslint indent: 2, bitwise: false, nomen: false, plusplus: false, white: false, regexp: false */
/*global document, window, escape, unescape */
/** @namespace The Stanford Javascript Crypto Library, top-level namespace. */
var sjcl = {
/** @namespace Symmetric ciphers. */
cipher: {},
/** @namespace Hash functions. Right now only SHA256 is implemented. */
hash: {},
/** @namespace Block cipher modes of operation. */
mode: {},
/** @namespace Miscellaneous. HMAC and PBKDF2. */
misc: {},
/**
* @namespace Bit array encoders and decoders.
*
* @description
* The members of this namespace are functions which translate between
* SJCL's bitArrays and other objects (usually strings). Because it
* isn't always clear which direction is encoding and which is decoding,
* the method names are "fromBits" and "toBits".
*/
codec: {},
/** @namespace Exceptions. */
exception: {
/** @class Ciphertext is corrupt. */
corrupt: function(message) {
this.toString = function() { return "CORRUPT: "+this.message; };
this.message = message;
},
/** @class Invalid parameter. */
invalid: function(message) {
this.toString = function() { return "INVALID: "+this.message; };
this.message = message;
},
/** @class Bug or missing feature in SJCL. */
bug: function(message) {
this.toString = function() { return "BUG: "+this.message; };
this.message = message;
}
}
};
/** @fileOverview Low-level AES implementation.
*
* This file contains a low-level implementation of AES, optimized for
* size and for efficiency on several browsers. It is based on
* OpenSSL's aes_core.c, a public-domain implementation by Vincent
* Rijmen, Antoon Bosselaers and Paulo Barreto.
*
* An older version of this implementation is available in the public
* domain, but this one is (c) Emily Stark, Mike Hamburg, Dan Boneh,
* Stanford University 2008-2010 and BSD-licensed for liability
* reasons.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/**
* Schedule out an AES key for both encryption and decryption. This
* is a low-level class. Use a cipher mode to do bulk encryption.
*
* @constructor
* @param {Array} key The key as an array of 4, 6 or 8 words.
*
* @class Advanced Encryption Standard (low-level interface)
*/
sjcl.cipher.aes = function (key) {
if (!this._tables[0][0][0]) {
this._precompute();
}
var i, j, tmp,
encKey, decKey,
sbox = this._tables[0][4], decTable = this._tables[1],
keyLen = key.length, rcon = 1;
if (keyLen !== 4 && keyLen !== 6 && keyLen !== 8) {
throw new sjcl.exception.invalid("invalid aes key size");
}
this._key = [encKey = key.slice(0), decKey = []];
// schedule encryption keys
for (i = keyLen; i < 4 * keyLen + 28; i++) {
tmp = encKey[i-1];
// apply sbox
if (i%keyLen === 0 || (keyLen === 8 && i%keyLen === 4)) {
tmp = sbox[tmp>>>24]<<24 ^ sbox[tmp>>16&255]<<16 ^ sbox[tmp>>8&255]<<8 ^ sbox[tmp&255];
// shift rows and add rcon
if (i%keyLen === 0) {
tmp = tmp<<8 ^ tmp>>>24 ^ rcon<<24;
rcon = rcon<<1 ^ (rcon>>7)*283;
}
}
encKey[i] = encKey[i-keyLen] ^ tmp;
}
// schedule decryption keys
for (j = 0; i; j++, i--) {
tmp = encKey[j&3 ? i : i - 4];
if (i<=4 || j<4) {
decKey[j] = tmp;
} else {
decKey[j] = decTable[0][sbox[tmp>>>24 ]] ^
decTable[1][sbox[tmp>>16 & 255]] ^
decTable[2][sbox[tmp>>8 & 255]] ^
decTable[3][sbox[tmp & 255]];
}
}
};
sjcl.cipher.aes.prototype = {
// public
/* Something like this might appear here eventually
name: "AES",
blockSize: 4,
keySizes: [4,6,8],
*/
/**
* Encrypt an array of 4 big-endian words.
* @param {Array} data The plaintext.
* @return {Array} The ciphertext.
*/
encrypt:function (data) { return this._crypt(data,0); },
/**
* Decrypt an array of 4 big-endian words.
* @param {Array} data The ciphertext.
* @return {Array} The plaintext.
*/
decrypt:function (data) { return this._crypt(data,1); },
/**
* The expanded S-box and inverse S-box tables. These will be computed
* on the client so that we don't have to send them down the wire.
*
* There are two tables, _tables[0] is for encryption and
* _tables[1] is for decryption.
*
* The first 4 sub-tables are the expanded S-box with MixColumns. The
* last (_tables[01][4]) is the S-box itself.
*
* @private
*/
_tables: [[[],[],[],[],[]],[[],[],[],[],[]]],
/**
* Expand the S-box tables.
*
* @private
*/
_precompute: function () {
var encTable = this._tables[0], decTable = this._tables[1],
sbox = encTable[4], sboxInv = decTable[4],
i, x, xInv, d=[], th=[], x2, x4, x8, s, tEnc, tDec;
// Compute double and third tables
for (i = 0; i < 256; i++) {
th[( d[i] = i<<1 ^ (i>>7)*283 )^i]=i;
}
for (x = xInv = 0; !sbox[x]; x ^= x2 || 1, xInv = th[xInv] || 1) {
// Compute sbox
s = xInv ^ xInv<<1 ^ xInv<<2 ^ xInv<<3 ^ xInv<<4;
s = s>>8 ^ s&255 ^ 99;
sbox[x] = s;
sboxInv[s] = x;
// Compute MixColumns
x8 = d[x4 = d[x2 = d[x]]];
tDec = x8*0x1010101 ^ x4*0x10001 ^ x2*0x101 ^ x*0x1010100;
tEnc = d[s]*0x101 ^ s*0x1010100;
for (i = 0; i < 4; i++) {
encTable[i][x] = tEnc = tEnc<<24 ^ tEnc>>>8;
decTable[i][s] = tDec = tDec<<24 ^ tDec>>>8;
}
}
// Compactify. Considerable speedup on Firefox.
for (i = 0; i < 5; i++) {
encTable[i] = encTable[i].slice(0);
decTable[i] = decTable[i].slice(0);
}
},
/**
* Encryption and decryption core.
* @param {Array} input Four words to be encrypted or decrypted.
* @param dir The direction, 0 for encrypt and 1 for decrypt.
* @return {Array} The four encrypted or decrypted words.
* @private
*/
_crypt:function (input, dir) {
if (input.length !== 4) {
throw new sjcl.exception.invalid("invalid aes block size");
}
var key = this._key[dir],
// state variables a,b,c,d are loaded with pre-whitened data
a = input[0] ^ key[0],
b = input[dir ? 3 : 1] ^ key[1],
c = input[2] ^ key[2],
d = input[dir ? 1 : 3] ^ key[3],
a2, b2, c2,
nInnerRounds = key.length/4 - 2,
i,
kIndex = 4,
out = [0,0,0,0],
table = this._tables[dir],
// load up the tables
t0 = table[0],
t1 = table[1],
t2 = table[2],
t3 = table[3],
sbox = table[4];
// Inner rounds. Cribbed from OpenSSL.
for (i = 0; i < nInnerRounds; i++) {
a2 = t0[a>>>24] ^ t1[b>>16 & 255] ^ t2[c>>8 & 255] ^ t3[d & 255] ^ key[kIndex];
b2 = t0[b>>>24] ^ t1[c>>16 & 255] ^ t2[d>>8 & 255] ^ t3[a & 255] ^ key[kIndex + 1];
c2 = t0[c>>>24] ^ t1[d>>16 & 255] ^ t2[a>>8 & 255] ^ t3[b & 255] ^ key[kIndex + 2];
d = t0[d>>>24] ^ t1[a>>16 & 255] ^ t2[b>>8 & 255] ^ t3[c & 255] ^ key[kIndex + 3];
kIndex += 4;
a=a2; b=b2; c=c2;
}
// Last round.
for (i = 0; i < 4; i++) {
out[dir ? 3&-i : i] =
sbox[a>>>24 ]<<24 ^
sbox[b>>16 & 255]<<16 ^
sbox[c>>8 & 255]<<8 ^
sbox[d & 255] ^
key[kIndex++];
a2=a; a=b; b=c; c=d; d=a2;
}
return out;
}
};
/** @fileOverview Arrays of bits, encoded as arrays of Numbers.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace Arrays of bits, encoded as arrays of Numbers.
*
* @description
* <p>
* These objects are the currency accepted by SJCL's crypto functions.
* </p>
*
* <p>
* Most of our crypto primitives operate on arrays of 4-byte words internally,
* but many of them can take arguments that are not a multiple of 4 bytes.
* This library encodes arrays of bits (whose size need not be a multiple of 8
* bits) as arrays of 32-bit words. The bits are packed, big-endian, into an
* array of words, 32 bits at a time. Since the words are double-precision
* floating point numbers, they fit some extra data. We use this (in a private,
* possibly-changing manner) to encode the number of bits actually present
* in the last word of the array.
* </p>
*
* <p>
* Because bitwise ops clear this out-of-band data, these arrays can be passed
* to ciphers like AES which want arrays of words.
* </p>
*/
sjcl.bitArray = {
/**
* Array slices in units of bits.
* @param {bitArray a} The array to slice.
* @param {Number} bstart The offset to the start of the slice, in bits.
* @param {Number} bend The offset to the end of the slice, in bits. If this is undefined,
* slice until the end of the array.
* @return {bitArray} The requested slice.
*/
bitSlice: function (a, bstart, bend) {
a = sjcl.bitArray._shiftRight(a.slice(bstart/32), 32 - (bstart & 31)).slice(1);
return (bend === undefined) ? a : sjcl.bitArray.clamp(a, bend-bstart);
},
/**
* Concatenate two bit arrays.
* @param {bitArray} a1 The first array.
* @param {bitArray} a2 The second array.
* @return {bitArray} The concatenation of a1 and a2.
*/
concat: function (a1, a2) {
if (a1.length === 0 || a2.length === 0) {
return a1.concat(a2);
}
var out, i, last = a1[a1.length-1], shift = sjcl.bitArray.getPartial(last);
if (shift === 32) {
return a1.concat(a2);
} else {
return sjcl.bitArray._shiftRight(a2, shift, last|0, a1.slice(0,a1.length-1));
}
},
/**
* Find the length of an array of bits.
* @param {bitArray} a The array.
* @return {Number} The length of a, in bits.
*/
bitLength: function (a) {
var l = a.length, x;
if (l === 0) { return 0; }
x = a[l - 1];
return (l-1) * 32 + sjcl.bitArray.getPartial(x);
},
/**
* Truncate an array.
* @param {bitArray} a The array.
* @param {Number} len The length to truncate to, in bits.
* @return {bitArray} A new array, truncated to len bits.
*/
clamp: function (a, len) {
if (a.length * 32 < len) { return a; }
a = a.slice(0, Math.ceil(len / 32));
var l = a.length;
len = len & 31;
if (l > 0 && len) {
a[l-1] = sjcl.bitArray.partial(len, a[l-1] & 0x80000000 >> (len-1), 1);
}
return a;
},
/**
* Make a partial word for a bit array.
* @param {Number} len The number of bits in the word.
* @param {Number} x The bits.
* @param {Number} [0] _end Pass 1 if x has already been shifted to the high side.
* @return {Number} The partial word.
*/
partial: function (len, x, _end) {
if (len === 32) { return x; }
return (_end ? x|0 : x << (32-len)) + len * 0x10000000000;
},
/**
* Get the number of bits used by a partial word.
* @param {Number} x The partial word.
* @return {Number} The number of bits used by the partial word.
*/
getPartial: function (x) {
return Math.round(x/0x10000000000) || 32;
},
/**
* Compare two arrays for equality in a predictable amount of time.
* @param {bitArray} a The first array.
* @param {bitArray} b The second array.
* @return {boolean} true if a == b; false otherwise.
*/
equal: function (a, b) {
if (sjcl.bitArray.bitLength(a) !== sjcl.bitArray.bitLength(b)) {
return false;
}
var x = 0, i;
for (i=0; i<a.length; i++) {
x |= a[i]^b[i];
}
return (x === 0);
},
/** Shift an array right.
* @param {bitArray} a The array to shift.
* @param {Number} shift The number of bits to shift.
* @param {Number} [carry=0] A byte to carry in
* @param {bitArray} [out=[]] An array to prepend to the output.
* @private
*/
_shiftRight: function (a, shift, carry, out) {
var i, last2=0, shift2;
if (out === undefined) { out = []; }
for (; shift >= 32; shift -= 32) {
out.push(carry);
carry = 0;
}
if (shift === 0) {
return out.concat(a);
}
for (i=0; i<a.length; i++) {
out.push(carry | a[i]>>>shift);
carry = a[i] << (32-shift);
}
last2 = a.length ? a[a.length-1] : 0;
shift2 = sjcl.bitArray.getPartial(last2);
out.push(sjcl.bitArray.partial(shift+shift2 & 31, (shift + shift2 > 32) ? carry : out.pop(),1));
return out;
},
/** xor a block of 4 words together.
* @private
*/
_xor4: function(x,y) {
return [x[0]^y[0],x[1]^y[1],x[2]^y[2],x[3]^y[3]];
}
};
/** @fileOverview Bit array codec implementations.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace UTF-8 strings */
sjcl.codec.utf8String = {
/** Convert from a bitArray to a UTF-8 string. */
fromBits: function (arr) {
var out = "", bl = sjcl.bitArray.bitLength(arr), i, tmp;
for (i=0; i<bl/8; i++) {
if ((i&3) === 0) {
tmp = arr[i/4];
}
out += String.fromCharCode(tmp >>> 24);
tmp <<= 8;
}
return decodeURIComponent(escape(out));
},
/** Convert from a UTF-8 string to a bitArray. */
toBits: function (str) {
str = unescape(encodeURIComponent(str));
var out = [], i, tmp=0;
for (i=0; i<str.length; i++) {
tmp = tmp << 8 | str.charCodeAt(i);
if ((i&3) === 3) {
out.push(tmp);
tmp = 0;
}
}
if (i&3) {
out.push(sjcl.bitArray.partial(8*(i&3), tmp));
}
return out;
}
};
/** @fileOverview Bit array codec implementations.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace Hexadecimal */
sjcl.codec.hex = {
/** Convert from a bitArray to a hex string. */
fromBits: function (arr) {
var out = "", i, x;
for (i=0; i<arr.length; i++) {
out += ((arr[i]|0)+0xF00000000000).toString(16).substr(4);
}
return out.substr(0, sjcl.bitArray.bitLength(arr)/4);//.replace(/(.{8})/g, "$1 ");
},
/** Convert from a hex string to a bitArray. */
toBits: function (str) {
var i, out=[], len;
str = str.replace(/\s|0x/g, "");
len = str.length;
str = str + "00000000";
for (i=0; i<str.length; i+=8) {
out.push(parseInt(str.substr(i,8),16)^0);
}
return sjcl.bitArray.clamp(out, len*4);
}
};
/** @fileOverview Bit array codec implementations.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace Base64 encoding/decoding */
sjcl.codec.base64 = {
/** The base64 alphabet.
* @private
*/
_chars: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/",
/** Convert from a bitArray to a base64 string. */
fromBits: function (arr, _noEquals) {
var out = "", i, bits=0, c = sjcl.codec.base64._chars, ta=0, bl = sjcl.bitArray.bitLength(arr);
for (i=0; out.length * 6 < bl; ) {
out += c.charAt((ta ^ arr[i]>>>bits) >>> 26);
if (bits < 6) {
ta = arr[i] << (6-bits);
bits += 26;
i++;
} else {
ta <<= 6;
bits -= 6;
}
}
while ((out.length & 3) && !_noEquals) { out += "="; }
return out;
},
/** Convert from a base64 string to a bitArray */
toBits: function(str) {
str = str.replace(/\s|=/g,'');
var out = [], i, bits=0, c = sjcl.codec.base64._chars, ta=0, x;
for (i=0; i<str.length; i++) {
x = c.indexOf(str.charAt(i));
if (x < 0) {
throw new sjcl.exception.invalid("this isn't base64!");
}
if (bits > 26) {
bits -= 26;
out.push(ta ^ x>>>bits);
ta = x << (32-bits);
} else {
bits += 6;
ta ^= x << (32-bits);
}
}
if (bits&56) {
out.push(sjcl.bitArray.partial(bits&56, ta, 1));
}
return out;
}
};
/** @fileOverview Bit array codec implementations.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace Arrays of bytes */
sjcl.codec.bytes = {
/** Convert from a bitArray to an array of bytes. */
fromBits: function (arr) {
var out = [], bl = sjcl.bitArray.bitLength(arr), i, tmp;
for (i=0; i<bl/8; i++) {
if ((i&3) === 0) {
tmp = arr[i/4];
}
out.push(tmp >>> 24);
tmp <<= 8;
}
return out;
},
/** Convert from an array of bytes to a bitArray. */
toBits: function (bytes) {
var out = [], i, tmp=0;
for (i=0; i<bytes.length; i++) {
tmp = tmp << 8 | bytes[i];
if ((i&3) === 3) {
out.push(tmp);
tmp = 0;
}
}
if (i&3) {
out.push(sjcl.bitArray.partial(8*(i&3), tmp));
}
return out;
}
};
/** @fileOverview Javascript SHA-256 implementation.
*
* An older version of this implementation is available in the public
* domain, but this one is (c) Emily Stark, Mike Hamburg, Dan Boneh,
* Stanford University 2008-2010 and BSD-licensed for liability
* reasons.
*
* Special thanks to Aldo Cortesi for pointing out several bugs in
* this code.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/**
* Context for a SHA-256 operation in progress.
* @constructor
* @class Secure Hash Algorithm, 256 bits.
*/
sjcl.hash.sha256 = function (hash) {
if (!this._key[0]) { this._precompute(); }
if (hash) {
this._h = hash._h.slice(0);
this._buffer = hash._buffer.slice(0);
this._length = hash._length;
} else {
this.reset();
}
};
/**
* Hash a string or an array of words.
* @static
* @param {bitArray|String} data the data to hash.
* @return {bitArray} The hash value, an array of 16 big-endian words.
*/
sjcl.hash.sha256.hash = function (data) {
return (new sjcl.hash.sha256()).update(data).finalize();
};
sjcl.hash.sha256.prototype = {
/**
* The hash's block size, in bits.
* @constant
*/
blockSize: 512,
/**
* Reset the hash state.
* @return this
*/
reset:function () {
this._h = this._init.slice(0);
this._buffer = [];
this._length = 0;
return this;
},
/**
* Input several words to the hash.
* @param {bitArray|String} data the data to hash.
* @return this
*/
update: function (data) {
if (typeof data === "string") {
data = sjcl.codec.utf8String.toBits(data);
}
var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
ol = this._length,
nl = this._length = ol + sjcl.bitArray.bitLength(data);
for (i = 512+ol & -512; i <= nl; i+= 512) {
this._block(b.splice(0,16));
}
return this;
},
/**
* Complete hashing and output the hash value.
* @return {bitArray} The hash value, an array of 16 big-endian words.
*/
finalize:function () {
var i, b = this._buffer, h = this._h;
// Round out and push the buffer
b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]);
// Round out the buffer to a multiple of 16 words, less the 2 length words.
for (i = b.length + 2; i & 15; i++) {
b.push(0);
}
// append the length
b.push(Math.floor(this._length / 0x100000000));
b.push(this._length | 0);
while (b.length) {
this._block(b.splice(0,16));
}
this.reset();
return h;
},
/**
* The SHA-256 initialization vector, to be precomputed.
* @private
*/
_init:[],
/*
_init:[0x6a09e667,0xbb67ae85,0x3c6ef372,0xa54ff53a,0x510e527f,0x9b05688c,0x1f83d9ab,0x5be0cd19],
*/
/**
* The SHA-256 hash key, to be precomputed.
* @private
*/
_key:[],
/*
_key:
[0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2],
*/
/**
* Function to precompute _init and _key.
* @private
*/
_precompute: function () {
var i = 0, prime = 2, factor;
function frac(x) { return (x-Math.floor(x)) * 0x100000000 | 0; }
outer: for (; i<64; prime++) {
for (factor=2; factor*factor <= prime; factor++) {
if (prime % factor === 0) {
// not a prime
continue outer;
}
}
if (i<8) {
this._init[i] = frac(Math.pow(prime, 1/2));
}
this._key[i] = frac(Math.pow(prime, 1/3));
i++;
}
},
/**
* Perform one cycle of SHA-256.
* @param {bitArray} words one block of words.
* @private
*/
_block:function (words) {
var i, tmp, a, b,
w = words.slice(0),
h = this._h,
k = this._key,
h0 = h[0], h1 = h[1], h2 = h[2], h3 = h[3],
h4 = h[4], h5 = h[5], h6 = h[6], h7 = h[7];
/* Rationale for placement of |0 :
* If a value can overflow is original 32 bits by a factor of more than a few
* million (2^23 ish), there is a possibility that it might overflow the
* 53-bit mantissa and lose precision.
*
* To avoid this, we clamp back to 32 bits by |'ing with 0 on any value that
* propagates around the loop, and on the hash state h[]. I don't believe
* that the clamps on h4 and on h0 are strictly necessary, but it's close
* (for h4 anyway), and better safe than sorry.
*
* The clamps on h[] are necessary for the output to be correct even in the
* common case and for short inputs.
*/
for (i=0; i<64; i++) {
// load up the input word for this round
if (i<16) {
tmp = w[i];
} else {
a = w[(i+1 ) & 15];
b = w[(i+14) & 15];
tmp = w[i&15] = ((a>>>7 ^ a>>>18 ^ a>>>3 ^ a<<25 ^ a<<14) +
(b>>>17 ^ b>>>19 ^ b>>>10 ^ b<<15 ^ b<<13) +
w[i&15] + w[(i+9) & 15]) | 0;
}
tmp = (tmp + h7 + (h4>>>6 ^ h4>>>11 ^ h4>>>25 ^ h4<<26 ^ h4<<21 ^ h4<<7) + (h6 ^ h4&(h5^h6)) + k[i]); // | 0;
// shift register
h7 = h6; h6 = h5; h5 = h4;
h4 = h3 + tmp | 0;
h3 = h2; h2 = h1; h1 = h0;
h0 = (tmp + ((h1&h2) ^ (h3&(h1^h2))) + (h1>>>2 ^ h1>>>13 ^ h1>>>22 ^ h1<<30 ^ h1<<19 ^ h1<<10)) | 0;
}
h[0] = h[0]+h0 | 0;
h[1] = h[1]+h1 | 0;
h[2] = h[2]+h2 | 0;
h[3] = h[3]+h3 | 0;
h[4] = h[4]+h4 | 0;
h[5] = h[5]+h5 | 0;
h[6] = h[6]+h6 | 0;
h[7] = h[7]+h7 | 0;
}
};
/** @fileOverview CCM mode implementation.
*
* Special thanks to Roy Nicholson for pointing out a bug in our
* implementation.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace CTR mode with CBC MAC. */
sjcl.mode.ccm = {
/** The name of the mode.
* @constant
*/
name: "ccm",
/** Encrypt in CCM mode.
* @static
* @param {Object} prf The pseudorandom function. It must have a block size of 16 bytes.
* @param {bitArray} plaintext The plaintext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} [adata=[]] The authenticated data.
* @param {Number} [tlen=64] the desired tag length, in bits.
* @return {bitArray} The encrypted data, an array of bytes.
*/
encrypt: function(prf, plaintext, iv, adata, tlen) {
var L, i, out = plaintext.slice(0), tag, w=sjcl.bitArray, ivl = w.bitLength(iv) / 8, ol = w.bitLength(out) / 8;
tlen = tlen || 64;
adata = adata || [];
if (ivl < 7) {
throw new sjcl.exception.invalid("ccm: iv must be at least 7 bytes");
}
// compute the length of the length
for (L=2; L<4 && ol >>> 8*L; L++) {}
if (L < 15 - ivl) { L = 15-ivl; }
iv = w.clamp(iv,8*(15-L));
// compute the tag
tag = sjcl.mode.ccm._computeTag(prf, plaintext, iv, adata, tlen, L);
// encrypt
out = sjcl.mode.ccm._ctrMode(prf, out, iv, tag, tlen, L);
return w.concat(out.data, out.tag);
},
/** Decrypt in CCM mode.
* @static
* @param {Object} prf The pseudorandom function. It must have a block size of 16 bytes.
* @param {bitArray} ciphertext The ciphertext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} [[]] adata The authenticated data.
* @param {Number} [64] tlen the desired tag length, in bits.
* @return {bitArray} The decrypted data.
*/
decrypt: function(prf, ciphertext, iv, adata, tlen) {
tlen = tlen || 64;
adata = adata || [];
var L, i,
w=sjcl.bitArray,
ivl = w.bitLength(iv) / 8,
ol = w.bitLength(ciphertext),
out = w.clamp(ciphertext, ol - tlen),
tag = w.bitSlice(ciphertext, ol - tlen), tag2;
ol = (ol - tlen) / 8;
if (ivl < 7) {
throw new sjcl.exception.invalid("ccm: iv must be at least 7 bytes");
}
// compute the length of the length
for (L=2; L<4 && ol >>> 8*L; L++) {}
if (L < 15 - ivl) { L = 15-ivl; }
iv = w.clamp(iv,8*(15-L));
// decrypt
out = sjcl.mode.ccm._ctrMode(prf, out, iv, tag, tlen, L);
// check the tag
tag2 = sjcl.mode.ccm._computeTag(prf, out.data, iv, adata, tlen, L);
if (!w.equal(out.tag, tag2)) {
throw new sjcl.exception.corrupt("ccm: tag doesn't match");
}
return out.data;
},
/* Compute the (unencrypted) authentication tag, according to the CCM specification
* @param {Object} prf The pseudorandom function.
* @param {bitArray} plaintext The plaintext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} adata The authenticated data.
* @param {Number} tlen the desired tag length, in bits.
* @return {bitArray} The tag, but not yet encrypted.
* @private
*/
_computeTag: function(prf, plaintext, iv, adata, tlen, L) {
// compute B[0]
var q, mac, field = 0, offset = 24, tmp, i, macData = [], w=sjcl.bitArray, xor = w._xor4;
tlen /= 8;
// check tag length and message length
if (tlen % 2 || tlen < 4 || tlen > 16) {
throw new sjcl.exception.invalid("ccm: invalid tag length");
}
if (adata.length > 0xFFFFFFFF || plaintext.length > 0xFFFFFFFF) {
// I don't want to deal with extracting high words from doubles.
throw new sjcl.exception.bug("ccm: can't deal with 4GiB or more data");
}
// mac the flags
mac = [w.partial(8, (adata.length ? 1<<6 : 0) | (tlen-2) << 2 | L-1)];
// mac the iv and length
mac = w.concat(mac, iv);
mac[3] |= w.bitLength(plaintext)/8;
mac = prf.encrypt(mac);
if (adata.length) {
// mac the associated data. start with its length...
tmp = w.bitLength(adata)/8;
if (tmp <= 0xFEFF) {
macData = [w.partial(16, tmp)];
} else if (tmp <= 0xFFFFFFFF) {
macData = w.concat([w.partial(16,0xFFFE)], [tmp]);
} // else ...
// mac the data itself
macData = w.concat(macData, adata);
for (i=0; i<macData.length; i += 4) {
mac = prf.encrypt(xor(mac, macData.slice(i,i+4).concat([0,0,0])));
}
}
// mac the plaintext
for (i=0; i<plaintext.length; i+=4) {
mac = prf.encrypt(xor(mac, plaintext.slice(i,i+4).concat([0,0,0])));
}
return w.clamp(mac, tlen * 8);
},
/** CCM CTR mode.
* Encrypt or decrypt data and tag with the prf in CCM-style CTR mode.
* May mutate its arguments.
* @param {Object} prf The PRF.
* @param {bitArray} data The data to be encrypted or decrypted.
* @param {bitArray} iv The initialization vector.
* @param {bitArray} tag The authentication tag.
* @param {Number} tlen The length of th etag, in bits.
* @param {Number} L The CCM L value.
* @return {Object} An object with data and tag, the en/decryption of data and tag values.
* @private
*/
_ctrMode: function(prf, data, iv, tag, tlen, L) {
var enc, i, w=sjcl.bitArray, xor = w._xor4, ctr, b, l = data.length, bl=w.bitLength(data);
// start the ctr
ctr = w.concat([w.partial(8,L-1)],iv).concat([0,0,0]).slice(0,4);
// en/decrypt the tag
tag = w.bitSlice(xor(tag,prf.encrypt(ctr)), 0, tlen);
// en/decrypt the data
if (!l) { return {tag:tag, data:[]}; }
for (i=0; i<l; i+=4) {
ctr[3]++;
enc = prf.encrypt(ctr);
data[i] ^= enc[0];
data[i+1] ^= enc[1];
data[i+2] ^= enc[2];
data[i+3] ^= enc[3];
}
return { tag:tag, data:w.clamp(data,bl) };
}
};
/** @fileOverview OCB 2.0 implementation
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace
* Phil Rogaway's Offset CodeBook mode, version 2.0.
* May be covered by US and international patents.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
sjcl.mode.ocb2 = {
/** The name of the mode.
* @constant
*/
name: "ocb2",
/** Encrypt in OCB mode, version 2.0.
* @param {Object} prp The block cipher. It must have a block size of 16 bytes.
* @param {bitArray} plaintext The plaintext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} [adata=[]] The authenticated data.
* @param {Number} [tlen=64] the desired tag length, in bits.
* @param [false] premac 1 if the authentication data is pre-macced with PMAC.
* @return The encrypted data, an array of bytes.
* @throws {sjcl.exception.invalid} if the IV isn't exactly 128 bits.
*/
encrypt: function(prp, plaintext, iv, adata, tlen, premac) {
if (sjcl.bitArray.bitLength(iv) !== 128) {
throw new sjcl.exception.invalid("ocb iv must be 128 bits");
}
var i,
times2 = sjcl.mode.ocb2._times2,
w = sjcl.bitArray,
xor = w._xor4,
checksum = [0,0,0,0],
delta = times2(prp.encrypt(iv)),
bi, bl,
output = [],
pad;
adata = adata || [];
tlen = tlen || 64;
for (i=0; i+4 < plaintext.length; i+=4) {
/* Encrypt a non-final block */
bi = plaintext.slice(i,i+4);
checksum = xor(checksum, bi);
output = output.concat(xor(delta,prp.encrypt(xor(delta, bi))));
delta = times2(delta);
}
/* Chop out the final block */
bi = plaintext.slice(i);
bl = w.bitLength(bi);
pad = prp.encrypt(xor(delta,[0,0,0,bl]));
bi = w.clamp(xor(bi.concat([0,0,0]),pad), bl);
/* Checksum the final block, and finalize the checksum */
checksum = xor(checksum,xor(bi.concat([0,0,0]),pad));
checksum = prp.encrypt(xor(checksum,xor(delta,times2(delta))));
/* MAC the header */
if (adata.length) {
checksum = xor(checksum, premac ? adata : sjcl.mode.ocb2.pmac(prp, adata));
}
return output.concat(w.concat(bi, w.clamp(checksum, tlen)));
},
/** Decrypt in OCB mode.
* @param {Object} prp The block cipher. It must have a block size of 16 bytes.
* @param {bitArray} ciphertext The ciphertext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} [adata=[]] The authenticated data.
* @param {Number} [tlen=64] the desired tag length, in bits.
* @param {boolean} [premac=false] true if the authentication data is pre-macced with PMAC.
* @return The decrypted data, an array of bytes.
* @throws {sjcl.exception.invalid} if the IV isn't exactly 128 bits.
* @throws {sjcl.exception.corrupt} if if the message is corrupt.
*/
decrypt: function(prp, ciphertext, iv, adata, tlen, premac) {
if (sjcl.bitArray.bitLength(iv) !== 128) {
throw new sjcl.exception.invalid("ocb iv must be 128 bits");
}
tlen = tlen || 64;
var i,
times2 = sjcl.mode.ocb2._times2,
w = sjcl.bitArray,
xor = w._xor4,
checksum = [0,0,0,0],
delta = times2(prp.encrypt(iv)),
bi, bl,
len = sjcl.bitArray.bitLength(ciphertext) - tlen,
output = [],
pad;
adata = adata || [];
for (i=0; i+4 < len/32; i+=4) {
/* Decrypt a non-final block */
bi = xor(delta, prp.decrypt(xor(delta, ciphertext.slice(i,i+4))));
checksum = xor(checksum, bi);
output = output.concat(bi);
delta = times2(delta);
}
/* Chop out and decrypt the final block */
bl = len-i*32;
pad = prp.encrypt(xor(delta,[0,0,0,bl]));
bi = xor(pad, w.clamp(ciphertext.slice(i),bl).concat([0,0,0]));
/* Checksum the final block, and finalize the checksum */
checksum = xor(checksum, bi);
checksum = prp.encrypt(xor(checksum, xor(delta, times2(delta))));
/* MAC the header */
if (adata.length) {
checksum = xor(checksum, premac ? adata : sjcl.mode.ocb2.pmac(prp, adata));
}
if (!w.equal(w.clamp(checksum, tlen), w.bitSlice(ciphertext, len))) {
throw new sjcl.exception.corrupt("ocb: tag doesn't match");
}
return output.concat(w.clamp(bi,bl));
},
/** PMAC authentication for OCB associated data.
* @param {Object} prp The block cipher. It must have a block size of 16 bytes.
* @param {bitArray} adata The authenticated data.
*/
pmac: function(prp, adata) {
var i,
times2 = sjcl.mode.ocb2._times2,
w = sjcl.bitArray,
xor = w._xor4,
checksum = [0,0,0,0],
delta = prp.encrypt([0,0,0,0]),
bi;
delta = xor(delta,times2(times2(delta)));
for (i=0; i+4<adata.length; i+=4) {
delta = times2(delta);
checksum = xor(checksum, prp.encrypt(xor(delta, adata.slice(i,i+4))));
}
bi = adata.slice(i);
if (w.bitLength(bi) < 128) {
delta = xor(delta,times2(delta));
bi = w.concat(bi,[0x80000000|0,0,0,0]);
}
checksum = xor(checksum, bi);
return prp.encrypt(xor(times2(xor(delta,times2(delta))), checksum));
},
/** Double a block of words, OCB style.
* @private
*/
_times2: function(x) {
return [x[0]<<1 ^ x[1]>>>31,
x[1]<<1 ^ x[2]>>>31,
x[2]<<1 ^ x[3]>>>31,
x[3]<<1 ^ (x[0]>>>31)*0x87];
}
};
/** @fileOverview HMAC implementation.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** HMAC with the specified hash function.
* @constructor
* @param {bitArray} key the key for HMAC.
* @param {Object} [hash=sjcl.hash.sha256] The hash function to use.
*/
sjcl.misc.hmac = function (key, Hash) {
this._hash = Hash = Hash || sjcl.hash.sha256;
var exKey = [[],[]], i,
bs = Hash.prototype.blockSize / 32;
this._baseHash = [new Hash(), new Hash()];
if (key.length > bs) {
key = Hash.hash(key);
}
for (i=0; i<bs; i++) {
exKey[0][i] = key[i]^0x36363636;
exKey[1][i] = key[i]^0x5C5C5C5C;
}
this._baseHash[0].update(exKey[0]);
this._baseHash[1].update(exKey[1]);
};
/** HMAC with the specified hash function. Also called encrypt since it's a prf.
* @param {bitArray|String} data The data to mac.
* @param {Codec} [encoding] the encoding function to use.
*/
sjcl.misc.hmac.prototype.encrypt = sjcl.misc.hmac.prototype.mac = function (data, encoding) {
var w = new (this._hash)(this._baseHash[0]).update(data, encoding).finalize();
return new (this._hash)(this._baseHash[1]).update(w).finalize();
};
/** @fileOverview Password-based key-derivation function, version 2.0.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** Password-Based Key-Derivation Function, version 2.0.
*
* Generate keys from passwords using PBKDF2-HMAC-SHA256.
*
* This is the method specified by RSA's PKCS #5 standard.
*
* @param {bitArray|String} password The password.
* @param {bitArray} salt The salt. Should have lots of entropy.
* @param {Number} [count=1000] The number of iterations. Higher numbers make the function slower but more secure.
* @param {Number} [length] The length of the derived key. Defaults to the
output size of the hash function.
* @param {Object} [Prff=sjcl.misc.hmac] The pseudorandom function family.
* @return {bitArray} the derived key.
*/
sjcl.misc.pbkdf2 = function (password, salt, count, length, Prff) {
count = count || 1000;
if (length < 0 || count < 0) {
throw sjcl.exception.invalid("invalid params to pbkdf2");
}
if (typeof password === "string") {
password = sjcl.codec.utf8String.toBits(password);
}
Prff = Prff || sjcl.misc.hmac;
var prf = new Prff(password),
u, ui, i, j, k, out = [], b = sjcl.bitArray;
for (k = 1; 32 * out.length < (length || 1); k++) {
u = ui = prf.encrypt(b.concat(salt,[k]));
for (i=1; i<count; i++) {
ui = prf.encrypt(ui);
for (j=0; j<ui.length; j++) {
u[j] ^= ui[j];
}
}
out = out.concat(u);
}
if (length) { out = b.clamp(out, length); }
return out;
};
/** @fileOverview Random number generator.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace Random number generator
*
* @description
* <p>
* This random number generator is a derivative of Ferguson and Schneier's
* generator Fortuna. It collects entropy from various events into several
* pools, implemented by streaming SHA-256 instances. It differs from
* ordinary Fortuna in a few ways, though.
* </p>
*
* <p>
* Most importantly, it has an entropy estimator. This is present because
* there is a strong conflict here between making the generator available
* as soon as possible, and making sure that it doesn't "run on empty".
* In Fortuna, there is a saved state file, and the system is likely to have
* time to warm up.
* </p>
*
* <p>
* Second, because users are unlikely to stay on the page for very long,
* and to speed startup time, the number of pools increases logarithmically:
* a new pool is created when the previous one is actually used for a reseed.
* This gives the same asymptotic guarantees as Fortuna, but gives more
* entropy to early reseeds.
* </p>
*
* <p>
* The entire mechanism here feels pretty klunky. Furthermore, there are
* several improvements that should be made, including support for
* dedicated cryptographic functions that may be present in some browsers;
* state files in local storage; cookies containing randomness; etc. So
* look for improvements in future versions.
* </p>
*/
sjcl.random = {
/** Generate several random words, and return them in an array
* @param {Number} nwords The number of words to generate.
*/
randomWords: function (nwords, paranoia) {
var out = [], i, readiness = this.isReady(paranoia), g;
if (readiness === this._NOT_READY) {
throw new sjcl.exception.notready("generator isn't seeded");
} else if (readiness & this._REQUIRES_RESEED) {
this._reseedFromPools(!(readiness & this._READY));
}
for (i=0; i<nwords; i+= 4) {
if ((i+1) % this._MAX_WORDS_PER_BURST === 0) {
this._gate();
}
g = this._gen4words();
out.push(g[0],g[1],g[2],g[3]);
}
this._gate();
return out.slice(0,nwords);
},
setDefaultParanoia: function (paranoia) {
this._defaultParanoia = paranoia;
},
/**
* Add entropy to the pools.
* @param data The entropic value. Should be a 32-bit integer, array of 32-bit integers, or string
* @param {Number} estimatedEntropy The estimated entropy of data, in bits
* @param {String} source The source of the entropy, eg "mouse"
*/
addEntropy: function (data, estimatedEntropy, source) {
source = source || "user";
var id,
i, ty = 0, tmp,
t = (new Date()).valueOf(),
robin = this._robins[source],
oldReady = this.isReady();
id = this._collectorIds[source];
if (id === undefined) { id = this._collectorIds[source] = this._collectorIdNext ++; }
if (robin === undefined) { robin = this._robins[source] = 0; }
this._robins[source] = ( this._robins[source] + 1 ) % this._pools.length;
switch(typeof(data)) {
case "number":
data=[data];
ty=1;
break;
case "object":
if (estimatedEntropy === undefined) {
/* horrible entropy estimator */
estimatedEntropy = 0;
for (i=0; i<data.length; i++) {
tmp= data[i];
while (tmp>0) {
estimatedEntropy++;
tmp = tmp >>> 1;
}
}
}
this._pools[robin].update([id,this._eventId++,ty||2,estimatedEntropy,t,data.length].concat(data));
break;
case "string":
if (estimatedEntropy === undefined) {
/* English text has just over 1 bit per character of entropy.
* But this might be HTML or something, and have far less
* entropy than English... Oh well, let's just say one bit.
*/
estimatedEntropy = data.length;
}
this._pools[robin].update([id,this._eventId++,3,estimatedEntropy,t,data.length]);
this._pools[robin].update(data);
break;
default:
throw new sjcl.exception.bug("random: addEntropy only supports number, array or string");
}
/* record the new strength */
this._poolEntropy[robin] += estimatedEntropy;
this._poolStrength += estimatedEntropy;
/* fire off events */
if (oldReady === this._NOT_READY) {
if (this.isReady() !== this._NOT_READY) {
this._fireEvent("seeded", Math.max(this._strength, this._poolStrength));
}
this._fireEvent("progress", this.getProgress());
}
},
/** Is the generator ready? */
isReady: function (paranoia) {
var entropyRequired = this._PARANOIA_LEVELS[ (paranoia !== undefined) ? paranoia : this._defaultParanoia ];
if (this._strength && this._strength >= entropyRequired) {
return (this._poolEntropy[0] > this._BITS_PER_RESEED && (new Date()).valueOf() > this._nextReseed) ?
this._REQUIRES_RESEED | this._READY :
this._READY;
} else {
return (this._poolStrength >= entropyRequired) ?
this._REQUIRES_RESEED | this._NOT_READY :
this._NOT_READY;
}
},
/** Get the generator's progress toward readiness, as a fraction */
getProgress: function (paranoia) {
var entropyRequired = this._PARANOIA_LEVELS[ paranoia ? paranoia : this._defaultParanoia ];
if (this._strength >= entropyRequired) {
return 1.0;
} else {
return (this._poolStrength > entropyRequired) ?
1.0 :
this._poolStrength / entropyRequired;
}
},
/** start the built-in entropy collectors */
startCollectors: function () {
if (this._collectorsStarted) { return; }
if (window.addEventListener) {
window.addEventListener("load", this._loadTimeCollector, false);
window.addEventListener("mousemove", this._mouseCollector, false);
} else if (document.attachEvent) {
document.attachEvent("onload", this._loadTimeCollector);
document.attachEvent("onmousemove", this._mouseCollector);
}
else {
throw new sjcl.exception.bug("can't attach event");
}
this._collectorsStarted = true;
},
/** stop the built-in entropy collectors */
stopCollectors: function () {
if (!this._collectorsStarted) { return; }
if (window.removeEventListener) {
window.removeEventListener("load", this._loadTimeCollector);
window.removeEventListener("mousemove", this._mouseCollector);
} else if (window.detachEvent) {
window.detachEvent("onload", this._loadTimeCollector);
window.detachEvent("onmousemove", this._mouseCollector);
}
this._collectorsStarted = false;
},
/* use a cookie to store entropy.
useCookie: function (all_cookies) {
throw new sjcl.exception.bug("random: useCookie is unimplemented");
},*/
/** add an event listener for progress or seeded-ness. */
addEventListener: function (name, callback) {
this._callbacks[name][this._callbackI++] = callback;
},
/** remove an event listener for progress or seeded-ness */
removeEventListener: function (name, cb) {
var i, j, cbs=this._callbacks[name], jsTemp=[];
/* I'm not sure if this is necessary; in C++, iterating over a
* collection and modifying it at the same time is a no-no.
*/
for (j in cbs) {
if (cbs.hasOwnProperty(j) && cbs[j] === cb) {
jsTemp.push(j);
}
}
for (i=0; i<jsTemp.length; i++) {
j = jsTemp[i];
delete cbs[j];
}
},
/* private */
_pools : [new sjcl.hash.sha256()],
_poolEntropy : [0],
_reseedCount : 0,
_robins : {},
_eventId : 0,
_collectorIds : {},
_collectorIdNext : 0,
_strength : 0,
_poolStrength : 0,
_nextReseed : 0,
_key : [0,0,0,0,0,0,0,0],
_counter : [0,0,0,0],
_cipher : undefined,
_defaultParanoia : 6,
/* event listener stuff */
_collectorsStarted : false,
_callbacks : {progress: {}, seeded: {}},
_callbackI : 0,
/* constants */
_NOT_READY : 0,
_READY : 1,
_REQUIRES_RESEED : 2,
_MAX_WORDS_PER_BURST : 65536,
_PARANOIA_LEVELS : [0,48,64,96,128,192,256,384,512,768,1024],
_MILLISECONDS_PER_RESEED : 30000,
_BITS_PER_RESEED : 80,
/** Generate 4 random words, no reseed, no gate.
* @private
*/
_gen4words: function () {
for (var i=0; i<4; i++) {
this._counter[i] = this._counter[i]+1 | 0;
if (this._counter[i]) { break; }
}
return this._cipher.encrypt(this._counter);
},
/* Rekey the AES instance with itself after a request, or every _MAX_WORDS_PER_BURST words.
* @private
*/
_gate: function () {
this._key = this._gen4words().concat(this._gen4words());
this._cipher = new sjcl.cipher.aes(this._key);
},
/** Reseed the generator with the given words
* @private
*/
_reseed: function (seedWords) {
this._key = sjcl.hash.sha256.hash(this._key.concat(seedWords));
this._cipher = new sjcl.cipher.aes(this._key);
for (var i=0; i<4; i++) {
this._counter[i] = this._counter[i]+1 | 0;
if (this._counter[i]) { break; }
}
},
/** reseed the data from the entropy pools
* @param full If set, use all the entropy pools in the reseed.
*/
_reseedFromPools: function (full) {
var reseedData = [], strength = 0, i;
this._nextReseed = reseedData[0] =
(new Date()).valueOf() + this._MILLISECONDS_PER_RESEED;
for (i=0; i<16; i++) {
/* On some browsers, this is cryptographically random. So we might
* as well toss it in the pot and stir...
*/
reseedData.push(Math.random()*0x100000000|0);
}
for (i=0; i<this._pools.length; i++) {
reseedData = reseedData.concat(this._pools[i].finalize());
strength += this._poolEntropy[i];
this._poolEntropy[i] = 0;
if (!full && (this._reseedCount & (1<<i))) { break; }
}
/* if we used the last pool, push a new one onto the stack */
if (this._reseedCount >= 1 << this._pools.length) {
this._pools.push(new sjcl.hash.sha256());
this._poolEntropy.push(0);
}
/* how strong was this reseed? */
this._poolStrength -= strength;
if (strength > this._strength) {
this._strength = strength;
}
this._reseedCount ++;
this._reseed(reseedData);
},
_mouseCollector: function (ev) {
var x = ev.x || ev.clientX || ev.offsetX, y = ev.y || ev.clientY || ev.offsetY;
sjcl.random.addEntropy([x,y], 2, "mouse");
},
_loadTimeCollector: function (ev) {
var d = new Date();
sjcl.random.addEntropy(d, 2, "loadtime");
},
_fireEvent: function (name, arg) {
var j, cbs=sjcl.random._callbacks[name], cbsTemp=[];
/* TODO: there is a race condition between removing collectors and firing them */
/* I'm not sure if this is necessary; in C++, iterating over a
* collection and modifying it at the same time is a no-no.
*/
for (j in cbs) {
if (cbs.hasOwnProperty(j)) {
cbsTemp.push(cbs[j]);
}
}
for (j=0; j<cbsTemp.length; j++) {
cbsTemp[j](arg);
}
}
};
/** @fileOverview Convenince functions centered around JSON encapsulation.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace JSON encapsulation */
sjcl.json = {
/** Default values for encryption */
defaults: { v:1, iter:1000, ks:128, ts:64, mode:"ccm", adata:"", cipher:"aes" },
/** Simple encryption function.
* @param {String|bitArray} password The password or key.
* @param {String} plaintext The data to encrypt.
* @param {Object} [params] The parameters including tag, iv and salt.
* @param {Object} [rp] A returned version with filled-in parameters.
* @return {String} The ciphertext.
* @throws {sjcl.exception.invalid} if a parameter is invalid.
*/
encrypt: function (password, plaintext, params, rp) {
params = params || {};
rp = rp || {};
var j = sjcl.json, p = j._add({ iv: sjcl.random.randomWords(4,0) },
j.defaults), tmp, prp;
j._add(p, params);
if (typeof p.salt === "string") {
p.salt = sjcl.codec.base64.toBits(p.salt);
}
if (typeof p.iv === "string") {
p.iv = sjcl.codec.base64.toBits(p.iv);
}
if (!sjcl.mode[p.mode] ||
!sjcl.cipher[p.cipher] ||
(typeof password === "string" && p.iter <= 100) ||
(p.ts !== 64 && p.ts !== 96 && p.ts !== 128) ||
(p.ks !== 128 && p.ks !== 192 && p.ks !== 256) ||
(p.iv.length < 2 || p.iv.length > 4)) {
throw new sjcl.exception.invalid("json encrypt: invalid parameters");
}
if (typeof password === "string") {
tmp = sjcl.misc.cachedPbkdf2(password, p);
password = tmp.key.slice(0,p.ks/32);
p.salt = tmp.salt;
}
if (typeof plaintext === "string") {
plaintext = sjcl.codec.utf8String.toBits(plaintext);
}
prp = new sjcl.cipher[p.cipher](password);
/* return the json data */
j._add(rp, p);
rp.key = password;
/* do the encryption */
p.ct = sjcl.mode[p.mode].encrypt(prp, plaintext, p.iv, p.adata, p.tag);
return j.encode(j._subtract(p, j.defaults));
},
/** Simple decryption function.
* @param {String|bitArray} password The password or key.
* @param {String} ciphertext The ciphertext to decrypt.
* @param {Object} [params] Additional non-default parameters.
* @param {Object} [rp] A returned object with filled parameters.
* @return {String} The plaintext.
* @throws {sjcl.exception.invalid} if a parameter is invalid.
* @throws {sjcl.exception.corrupt} if the ciphertext is corrupt.
*/
decrypt: function (password, ciphertext, params, rp) {
params = params || {};
rp = rp || {};
var j = sjcl.json, p = j._add(j._add(j._add({},j.defaults),j.decode(ciphertext)), params, true), ct, tmp, prp;
if (typeof p.salt === "string") {
p.salt = sjcl.codec.base64.toBits(p.salt);
}
if (typeof p.iv === "string") {
p.iv = sjcl.codec.base64.toBits(p.iv);
}
if (!sjcl.mode[p.mode] ||
!sjcl.cipher[p.cipher] ||
(typeof password === "string" && p.iter <= 100) ||
(p.ts !== 64 && p.ts !== 96 && p.ts !== 128) ||
(p.ks !== 128 && p.ks !== 192 && p.ks !== 256) ||
(!p.iv) ||
(p.iv.length < 2 || p.iv.length > 4)) {
throw new sjcl.exception.invalid("json decrypt: invalid parameters");
}
if (typeof password === "string") {
tmp = sjcl.misc.cachedPbkdf2(password, p);
password = tmp.key.slice(0,p.ks/32);
p.salt = tmp.salt;
}
prp = new sjcl.cipher[p.cipher](password);
/* do the decryption */
ct = sjcl.mode[p.mode].decrypt(prp, p.ct, p.iv, p.adata, p.tag);
/* return the json data */
j._add(rp, p);
rp.key = password;
return sjcl.codec.utf8String.fromBits(ct);
},
/** Encode a flat structure into a JSON string.
* @param {Object} obj The structure to encode.
* @return {String} A JSON string.
* @throws {sjcl.exception.invalid} if obj has a non-alphanumeric property.
* @throws {sjcl.exception.bug} if a parameter has an unsupported type.
*/
encode: function (obj) {
var i, out='{', comma='';
for (i in obj) {
if (obj.hasOwnProperty(i)) {
if (!i.match(/^[a-z0-9]+$/i)) {
throw new sjcl.exception.invalid("json encode: invalid property name");
}
out += comma + i + ':';
comma = ',';
switch (typeof obj[i]) {
case 'number':
case 'boolean':
out += obj[i];
break;
case 'string':
out += '"' + escape(obj[i]) + '"';
break;
case 'object':
out += '"' + sjcl.codec.base64.fromBits(obj[i],1) + '"';
break;
default:
throw new sjcl.exception.bug("json encode: unsupported type");
}
}
}
return out+'}';
},
/** Decode a simple (flat) JSON string into a structure. The ciphertext,
* adata, salt and iv will be base64-decoded.
* @param {String} str The string.
* @return {Object} The decoded structure.
* @throws {sjcl.exception.invalid} if str isn't (simple) JSON.
*/
decode: function (str) {
str = str.replace(/\s/g,'');
if (!str.match(/^\{.*\}$/)) {
throw new sjcl.exception.invalid("json decode: this isn't json!");
}
var a = str.replace(/^\{|\}$/g, '').split(/,/), out={}, i, m;
for (i=0; i<a.length; i++) {
if (!(m=a[i].match(/^([a-z][a-z0-9]*):(?:(\d+)|"([a-z0-9+\/%*_.@=\-]*)")$/i))) {
throw new sjcl.exception.invalid("json decode: this isn't json!");
}
if (m[2]) {
out[m[1]] = parseInt(m[2],10);
} else {
out[m[1]] = m[1].match(/^(ct|salt|iv)$/) ? sjcl.codec.base64.toBits(m[3]) : unescape(m[3]);
}
}
return out;
},
/** Insert all elements of src into target, modifying and returning target.
* @param {Object} target The object to be modified.
* @param {Object} src The object to pull data from.
* @param {boolean} [requireSame=false] If true, throw an exception if any field of target differs from corresponding field of src.
* @return {Object} target.
* @private
*/
_add: function (target, src, requireSame) {
if (target === undefined) { target = {}; }
if (src === undefined) { return target; }
var i;
for (i in src) {
if (src.hasOwnProperty(i)) {
if (requireSame && target[i] !== undefined && target[i] !== src[i]) {
throw new sjcl.exception.invalid("required parameter overridden");
}
target[i] = src[i];
}
}
return target;
},
/** Remove all elements of minus from plus. Does not modify plus.
* @private
*/
_subtract: function (plus, minus) {
var out = {}, i;
for (i in plus) {
if (plus.hasOwnProperty(i) && plus[i] !== minus[i]) {
out[i] = plus[i];
}
}
return out;
},
/** Return only the specified elements of src.
* @private
*/
_filter: function (src, filter) {
var out = {}, i;
for (i=0; i<filter.length; i++) {
if (src[filter[i]] !== undefined) {
out[filter[i]] = src[filter[i]];
}
}
return out;
}
};
/** Simple encryption function; convenient shorthand for sjcl.json.encrypt.
* @param {String|bitArray} password The password or key.
* @param {String} plaintext The data to encrypt.
* @param {Object} [params] The parameters including tag, iv and salt.
* @param {Object} [rp] A returned version with filled-in parameters.
* @return {String} The ciphertext.
*/
sjcl.encrypt = sjcl.json.encrypt;
/** Simple decryption function; convenient shorthand for sjcl.json.decrypt.
* @param {String|bitArray} password The password or key.
* @param {String} ciphertext The ciphertext to decrypt.
* @param {Object} [params] Additional non-default parameters.
* @param {Object} [rp] A returned object with filled parameters.
* @return {String} The plaintext.
*/
sjcl.decrypt = sjcl.json.decrypt;
/** The cache for cachedPbkdf2.
* @private
*/
sjcl.misc._pbkdf2Cache = {};
/** Cached PBKDF2 key derivation.
* @param {String} The password.
* @param {Object} The derivation params (iteration count and optional salt).
* @return {Object} The derived data in key, the salt in salt.
*/
sjcl.misc.cachedPbkdf2 = function (password, obj) {
var cache = sjcl.misc._pbkdf2Cache, c, cp, str, salt, iter;
obj = obj || {};
iter = obj.iter || 1000;
/* open the cache for this password and iteration count */
cp = cache[password] = cache[password] || {};
c = cp[iter] = cp[iter] || { firstSalt: (obj.salt && obj.salt.length) ?
obj.salt.slice(0) : sjcl.random.randomWords(2,0) };
salt = (obj.salt === undefined) ? c.firstSalt : obj.salt;
c[salt] = c[salt] || sjcl.misc.pbkdf2(password, salt, obj.iter);
return { key: c[salt].slice(0), salt:salt.slice(0) };
};
|