aboutsummaryrefslogtreecommitdiffstats
path: root/src/projet.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/projet.cpp')
-rw-r--r--src/projet.cpp59
1 files changed, 36 insertions, 23 deletions
diff --git a/src/projet.cpp b/src/projet.cpp
index 9d3ac15..205e362 100644
--- a/src/projet.cpp
+++ b/src/projet.cpp
@@ -75,24 +75,37 @@ std::vector<double> normalize (std::vector<double> mu) {
}
- void exemple2_stratified (int d){
+ vector <vector<double> > exemple2_stratified (int d){
std::vector<double> mu(d);
- mu = argmax(0.05, 1.0, 50, 0.1, 45, d);
- std::vector<double> u(d);
- u = normalize(mu);
- vector<double> q = quantile_norm(100, 1);
- vector<double> p(100, 0.01);
- asian_option A(0.05, 1.0, 50, 0.1, 45, true);
- exponential_tilt<asian_option> G(mu, A);
- typedef compose_t<exponential_tilt<asian_option>, multi_gaussian_truncated> tilted_option;
- std::vector<tilted_option> X;
- X.push_back(compose(G, multi_gaussian_truncated(GSL_NEGINF,q[0], u)));
- for(int i=1; i<100; i++) {
- X.push_back(compose(G, multi_gaussian_truncated(q[i-1],q[i], u)));
- }
- stratified_sampling<tilted_option> S(p, X);
- S.draw(1000000);
- cout<<"l'estimateur de la moyenne est :"<<S.estimator().first<<endl;
+ vector<int> K = {45, 50, 55};
+ vector<int> N = {100000, 400000, 500000};
+ vector< vector<double> > data(3);
+ for (int i=0; i<3; i++){
+ mu = argmax(0.05, 1.0, 50, 0.1, K[i], d);
+ std::vector<double> u(d);
+ u = normalize(mu);
+ vector<double> q = quantile_norm(100, 1);
+ vector<double> p(100, 0.01);
+ asian_option A(0.05, 1.0, 50, 0.1, K[i], true);
+ exponential_tilt<asian_option> G(mu, A);
+ typedef compose_t<exponential_tilt<asian_option>, multi_gaussian_truncated> tilted_option;
+ std::vector<tilted_option> X;
+ X.push_back(compose(G, multi_gaussian_truncated(GSL_NEGINF,q[0], u)));
+ for(int j=1; j<100; i++) {
+ X.push_back(compose(G, multi_gaussian_truncated(q[j-1],q[j], u)));
+ }
+ stratified_sampling<tilted_option> S(p, X);
+ vector<double> r(3, 0);
+ for (int j=0; j<3; i++){
+ S.draw(N[j]);
+ }
+ r[0] = K[i];
+ r[1] = S.estimator().first;
+ r[2] = S.estimator().second;
+ data[i] = r;
+ for(int j=0; i<3; i++){cout<<data[i][j]<<endl;};
+ }
+ return data;
}
void exemple2_rqmc(int d) {
@@ -131,12 +144,12 @@ int make_table1(vector< vector<double> > data1, vector< vector<double> > data2)
int main()
{
init_alea(1);
- cout<<gsl_cdf_gaussian_Pinv(0.975,1)<<endl;
- cout<<"Stratified_sampling sur l'exemple 1 de la normale"<<endl;
- vector< vector<double> > data1 = exemple1_stratified();
- cout<<"Randomised quasi Monte-Carlo sur l'exemple 1 de la normale"<<endl;
- vector< vector<double> > data2 = exemple1_rqmc();
- make_table1(data1, data2);
+ //~ cout<<gsl_cdf_gaussian_Pinv(0.975,1)<<endl;
+ //~ cout<<"Stratified_sampling sur l'exemple 1 de la normale"<<endl;
+ //~ vector< vector<double> > data1 = exemple1_stratified();
+ //~ cout<<"Randomised quasi Monte-Carlo sur l'exemple 1 de la normale"<<endl;
+ //~ vector< vector<double> > data2 = exemple1_rqmc();
+ //~ make_table1(data1, data2);
exemple2_stratified(16);
return 0;