diff options
| -rw-r--r-- | python/notebooks/Reto Report.ipynb | 222 | ||||
| -rw-r--r-- | python/notebooks/Single Names Monitoring.ipynb | 280 |
2 files changed, 368 insertions, 134 deletions
diff --git a/python/notebooks/Reto Report.ipynb b/python/notebooks/Reto Report.ipynb index 6769a123..2e1eb626 100644 --- a/python/notebooks/Reto Report.ipynb +++ b/python/notebooks/Reto Report.ipynb @@ -16,6 +16,7 @@ "from analytics.index_data import get_index_quotes\n", "from analytics.scenarios import run_portfolio_scenarios\n", "from analytics import BlackSwaption, CreditIndex, BlackSwaptionVolSurface, Portfolio,DualCorrTranche\n", + "from copy import deepcopy\n", "\n", "from utils.db import dbconn, dbengine\n", "\n", @@ -99,6 +100,7 @@ "temp = pd.concat([paydowns, df.principal_payment, df.accrued_payment], axis=1).fillna(0)\n", "turnover = (temp.sum(axis=1)/nav.begbooknav).rolling(12).sum()\n", "turnover[12:].plot()\n", + "turnover.min(), turnover.max(), turnover.mean()\n", "turnover[-1]" ] }, @@ -108,11 +110,11 @@ "metadata": {}, "outputs": [], "source": [ - "################################### Average Portfolio Sales Turnover - as of last monthend from today\n", + "################################### BRINKER: Average Portfolio Sales Turnover - as of last monthend from today\n", "#(total Bond Sales Proceeds + paydown)/average starting 12 months NAV\n", "#Actually: Rolling 12 months sum of (total bond sales proceeds + paydown)/monthly NAV\n", "nav = go.get_net_navs()\n", - "fund='SERCGMAST'\n", + "fund='BRINKER'\n", "sql_string = \"SELECT * FROM bonds WHERE buysell IS False and fund = %s\"\n", "df = pd.read_sql_query(sql_string, dawn_engine,\n", " parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n", @@ -138,15 +140,75 @@ "metadata": {}, "outputs": [], "source": [ - "################################### Average Monthly Traded Volume\n", + "################################### Number of position (min/max/average) /position size (min/max/average) /Top 10 position size\n", + "portfolio = go.get_portfolio()\n", "nav = go.get_net_navs()\n", - "sql_string = \"SELECT * FROM bonds\"\n", - "df = pd.read_sql_query(sql_string, dawn_engine,\n", + "exc_port_list = [None, 'SERCGLLC__SERCGLLC', 'CASH', 'SERCGLTD__SERCGLTD', 'GFS_HELPER_BUSINESS_UNIT', 'SER_TEST__SER_TEST']\n", + "exc_inst_list = ['CAD', 'CADF', 'SEREONUS', 'USD', 'USDF', 'USDLOAN', 'EUR', 'EURLOAN', 'USDCASHINT',\n", + " 'USDLOANOLD', 'USDSWAPFEE', 'EURF','CADCASHINT','COMMISSIONFEES', 'EURCASHINT', 'COMMUNICATIONFEES']\n", + "exc_inst_list2 = ['86359DUR6OLD2','004375DV0OLD4','32027GAD8OLD7','75406DAC7OLD7','86359DMN4OLD7','45661EAW4OLD7']\n", + "\n", + "portfolio = portfolio[~portfolio.port.isin(exc_port_list) &\n", + " ~portfolio.identifier.isin(exc_inst_list) &\n", + " ~portfolio.identifier.isin(exc_inst_list2)]\n", + "\n", + "all_positions = portfolio.groupby(['periodenddate', 'identifier'])['endbooknav'].sum() \n", + "num_pos = all_positions.groupby('periodenddate').count()\n", + "#min/max/mean number of positions\n", + "num_pos.min(), num_pos.max(), num_pos.mean()\n", + "\n", + "bonds = portfolio[(portfolio.custacctname == 'V0NSCLMAMB') &\n", + " (portfolio.identifier != 'USD') &\n", + " (portfolio.endqty != 0) &\n", + " (portfolio.port.isin(['MORTGAGES', 'STRUCTURED', 'CLO'])) &\n", + " (~portfolio.strat.isin(['MBSCDS']))]\n", + "\n", + "monthend_bonds = bonds.groupby(pd.Grouper(freq=\"M\"), group_keys=False).apply(\n", + " lambda df: df.loc[df.index[-1]]\n", + " )\n", + "monthend_bonds = monthend_bonds.groupby(['periodenddate', 'identifier']).sum()\n", + "nav.index.rename('periodenddate', inplace=True)\n", + "monthend_bonds = monthend_bonds.merge(nav, left_index=True, right_index=True, suffixes=('_bond', '_fund'))\n", + "monthend_bonds['percentage'] = monthend_bonds.endbooknav_bond/monthend_bonds.endbooknav_fund\n", + "last_date = monthend_bonds.index.get_level_values(0).max() \n", + "latest = monthend_bonds.loc[last_date]\n", + "#min/max/mean position size\n", + "latest['percentage'][latest['percentage']>0.0000001].min(), latest['percentage'].max(), latest['percentage'].mean()\n", + "#10th largest positions\n", + "ten_largest = monthend_bonds.groupby('periodenddate').apply(lambda df: df['percentage'].nlargest(10).sum())\n", + "ten_largest.min(), ten_largest.max(), ten_largest.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "################################### Average Traded Volume\n", + "nav = go.get_net_navs()\n", + "sql_string = \"SELECT * FROM bonds where fund='SERCGMAST'\"\n", + "bond_trades = pd.read_sql_query(sql_string, dawn_engine,\n", " parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n", " index_col = 'trade_date')\n", - "df = df.groupby(pd.Grouper(freq='M')).sum()\n", - "volume = df.principal_payment/nav.endbooknav\n", - "volume.mean()" + "g = bond_trades['principal_payment'].groupby(pd.Grouper(freq='M'))\n", + "#min/max/mean bond trades by count (weekly = /4)\n", + "g.count().min()/4, g.count().max()/4, g.count().mean()/4\n", + "#min/max/mean bond trades by MV (weekly = /4)\n", + "volume = g.sum()/nav.endbooknav\n", + "volume.min()/4, volume.max()/4, volume.mean()/4\n", + "\n", + "sql_string = \"SELECT * FROM cds where fund='SERCGMAST'\"\n", + "cds_trades = pd.read_sql_query(sql_string, dawn_engine,\n", + " parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n", + " index_col = 'trade_date')\n", + "g = cds_trades['notional'].groupby(pd.Grouper(freq='M'))\n", + "#min/max/mean cds trades by count\n", + "g.count().min()/4, g.count().max()/4, g.count().mean()/4\n", + "#min/max/mean cds trades by notional\n", + "volume = g.sum()/nav.endbooknav\n", + "volume.fillna(0, inplace=True)\n", + "volume.min(), volume.max()/4, volume.mean()/4" ] }, { @@ -159,7 +221,7 @@ "#Time series of bond portfolio age (portfolio date - latest buy date of position) - weighted by MV of all bonds.\n", "#Problem is if we buy the same position again it resets to the holding period to 0\n", "nav = go.get_net_navs()\n", - "sql_string = \"SELECT * FROM bonds order by trade_date desc\"\n", + "sql_string = \"SELECT * FROM bonds where fund = 'SERCGMAST' order by trade_date desc\"\n", "df = pd.read_sql_query(sql_string, dawn_engine,\n", " parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n", " index_col = 'trade_date')\n", @@ -173,7 +235,9 @@ "buy_dates['hold_days'] = (buy_dates.index - buy_dates.buy_date)/np.timedelta64(1, 'D')\n", "def weighted_average(df):\n", " return np.average(df.hold_days,weights=df.endbooknav)\n", - "hold_period = buy_dates.groupby('periodenddate').apply(func = weighted_average)" + "hold_period = buy_dates.groupby('periodenddate').apply(func = weighted_average)\n", + "hold_period_last_five = hold_period.loc[datetime.date.today()- datetime.timedelta(weeks=52*5)::]\n", + "hold_period_last_five.min(), hold_period_last_five.max(), hold_period_last_five.mean()" ] }, { @@ -208,11 +272,84 @@ "metadata": {}, "outputs": [], "source": [ + "################################## Leverage Ratio\n", + "nav = go.get_net_navs()\n", + "portfolio = go.get_portfolio()\n", + "monthend_portfolio = portfolio.groupby(pd.Grouper(freq=\"M\"), group_keys=False).apply(\n", + " lambda df: df.loc[df.index[-1]]\n", + " )\n", + "monthend_byinvid = monthend_portfolio.groupby(['periodenddate','invid']).sum()\n", + "positive = monthend_byinvid['endbooknav'].groupby(['periodenddate']).agg(lambda x: x[x>0].sum())\n", + "nav = nav.merge(positive, left_index=True, right_index=True)\n", + "nav['leverage'] = nav.endbooknav_y/nav.endbooknav_x\n", + "nav['leverage'].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "##################################\n", + "def build_portf(position_date, spread_date):\n", + " conn = dawn_engine.raw_connection()\n", + " mysql_engine = dbengine('rmbs_model')\n", + " mysqlcrt_engine = dbengine('crt')\n", + "\n", + " portf = get_tranche_portfolio(position_date, conn, False, 'SERCGMAST')\n", + " s_portf = get_swaption_portfolio(position_date, conn)\n", + " for t, id in zip(s_portf.trades, s_portf.trade_ids):\n", + " portf.add_trade(t, id)\n", + "\n", + " #index positions\n", + " df = pd.read_sql_query(\"SELECT * from list_cds_positions_by_strat(%s)\",\n", + " dawn_engine, params=(position_date,))\n", + " df_no_curve = df[~df.folder.str.contains(\"CURVE\")]\n", + " for t in df_no_curve.itertuples(index=False):\n", + " portf.add_trade(CreditIndex(redcode=t.security_id, maturity=t.maturity, notional=t.notional),\n", + " (t.folder, t.security_desc))\n", + "\n", + " #separately add in curve delta\n", + " df_curve = df[df.folder.str.contains(\"CURVE\")]\n", + " curve_portf = Portfolio([CreditIndex(redcode=t.security_id, maturity=t.maturity, notional=t.notional)\n", + " for t in df_curve.itertuples(index=False)])\n", + " curve_portf.value_date = spread_date\n", + " curve_portf.mark()\n", + " \n", + " hyontr = deepcopy(analytics._ontr)\n", + " hyontr.notional = curve_portf.hy_equiv\n", + " portf.add_trade(hyontr, ('curve_trades', ''))\n", + "\n", + " #get bond risks:\n", + " with dbconn('etdb') as etconn, dbconn('dawndb') as dawnconn:\n", + " rmbs_pos = subprime_risk(position_date, dawnconn, mysql_engine)\n", + " clo_pos = clo_risk(position_date, dawnconn, etconn)\n", + " crt_pos = crt_risk(position_date, dawnconn, mysqlcrt_engine)\n", + " notional = 0\n", + " for pos in [rmbs_pos, clo_pos, crt_pos]:\n", + " notional += pos['hy_equiv'].sum() if pos is not None else 0\n", + " \n", + " hyontr_1 = deepcopy(analytics._ontr)\n", + " hyontr_1.notional = -notional\n", + " portf.add_trade(hyontr_1, ('bonds', ''))\n", + " \n", + " portf.value_date = spread_date\n", + " portf.mark(interp_method=\"bivariate_linear\")\n", + " portf.reset_pv()\n", + " \n", + " return portf" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "################################### Calculate stress scenario \n", "position_date = (datetime.date.today() - BDay(1)).date()\n", - "shock_date = (datetime.date.today() - BDay(1)).date()\n", - "spread_date = shock_date\n", - "(position_date, spread_date, shock_date)\n", + "spread_date = (datetime.date.today() - BDay(1)).date()\n", "analytics.init_ontr(spread_date)" ] }, @@ -243,59 +380,20 @@ "metadata": {}, "outputs": [], "source": [ - "#tranche positions\n", - "conn = dawn_engine.raw_connection()\n", - "mysql_engine = dbengine('rmbs_model')\n", - "mysqlcrt_engine = dbengine('crt')\n", - "\n", - "portf = get_tranche_portfolio(position_date, conn, False, 'SERCGMAST')\n", - "s_portf = get_swaption_portfolio(position_date, conn)\n", - "for t, id in zip(s_portf.trades, s_portf.trade_ids):\n", - " portf.add_trade(t, id)\n", - "\n", - "#index positions\n", - "df = pd.read_sql_query(\"SELECT * from list_cds_positions_by_strat(%s)\",\n", - " dawn_engine, params=(position_date,))\n", - "df_no_curve = df[~df.folder.str.contains(\"CURVE\")]\n", - "for t in df_no_curve.itertuples(index=False):\n", - " portf.add_trade(CreditIndex(redcode=t.security_id, maturity=t.maturity, notional=t.notional),\n", - " (t.folder, t.security_desc))\n", - " \n", - "#separately add in curve delta\n", - "df_curve = df[df.folder.str.contains(\"CURVE\")]\n", - "curve_portf = Portfolio([CreditIndex(redcode=t.security_id, maturity=t.maturity, notional=t.notional)\n", - " for t in df_curve.itertuples(index=False)])\n", - "curve_portf.value_date = spread_date\n", - "curve_portf.mark()\n", - "\n", - "portf.add_trade(CreditIndex('HY', on_the_run('HY', spread_date), '5yr', \n", - " value_date=spread_date, \n", - " notional=curve_portf.hy_equiv), ('curve_trades', ''))\n", - "\n", - "#get bond risks:\n", - "with dbconn('etdb') as etconn, dbconn('dawndb') as dawnconn:\n", - " rmbs_pos = subprime_risk(position_date, dawnconn, mysql_engine)\n", - " clo_pos = clo_risk(position_date, dawnconn, etconn)\n", - " crt_pos = crt_risk(position_date, dawnconn, mysqlcrt_engine)\n", - "if clo_pos is None:\n", - " notional = rmbs_pos['hy_equiv'].sum() + crt_pos['hy_equiv'].sum()\n", - "else:\n", - " notional = rmbs_pos['hy_equiv'].sum() + clo_pos['hy_equiv'].sum() + crt_pos['hy_equiv'].sum()\n", - "portf.add_trade(CreditIndex('HY', on_the_run('HY', spread_date), '5yr', \n", - " value_date = spread_date, \n", - " notional = -notional), ('bonds', ''))\n", - " \n", - "portf.value_date = spread_date\n", - "portf.mark(interp_method=\"bivariate_linear\")\n", - "portf.reset_pv()\n", + "#tranche/swaption positions\n", + "portf = build_portf(position_date, spread_date)\n", "\n", "vol_surface = {}\n", "for trade in portf.swaptions:\n", - " vs = BlackSwaptionVolSurface(trade.index.index_type, trade.index.series, \n", - " value_date=spread_date, interp_method = \"bivariate_linear\")\n", + " try:\n", + " vs = BlackSwaptionVolSurface(trade.index.index_type, trade.index.series, \n", + " value_date=spread_date, interp_method = \"bivariate_linear\")\n", + " except:\n", + " vs = BlackSwaptionVolSurface(trade.index.index_type, trade.index.series + 1, \n", + " value_date=spread_date, interp_method = \"bivariate_linear\")\n", " vol_surface[(trade.index.index_type, trade.index.series, trade.option_type)] = vs[vs.list(source='MS', option_type=trade.option_type)[-1]]\n", "\n", - "scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(shock_date)], params=[\"pnl\"],\n", + "scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(spread_date)], params=[\"pnl\"],\n", " spread_shock=widen,\n", " vol_shock=[0],\n", " corr_shock = [0],\n", @@ -338,7 +436,7 @@ " groupby(level=0, axis=1).sum())\n", "\n", "options = ['HYOPTDEL', 'HYPAYER', 'HYREC', 'IGOPTDEL', 'IGPAYER', 'IGREC']\n", - "tranches = ['HYMEZ', 'HYINX', 'HYEQY', 'IGMEZ', 'IGINX', 'IGEQY', 'IGSNR', 'IGINX', 'BSPK']\n", + "tranches = ['HYMEZ', 'HYINX', 'HYEQY', 'IGMEZ', 'IGINX', 'IGEQY', 'IGSNR', 'IGINX', 'BSPK', 'XOMEZ', 'XOINX']\n", "\n", "scenarios['options'] = scenarios[set(scenarios.columns).intersection(options)].sum(axis=1)\n", "scenarios['tranches'] = scenarios[set(scenarios.columns).intersection(tranches)].sum(axis=1)\n", diff --git a/python/notebooks/Single Names Monitoring.ipynb b/python/notebooks/Single Names Monitoring.ipynb index 8b734db9..46230799 100644 --- a/python/notebooks/Single Names Monitoring.ipynb +++ b/python/notebooks/Single Names Monitoring.ipynb @@ -13,10 +13,19 @@ "from analytics.basket_index import MarkitBasketIndex\n", "from analytics import on_the_run\n", "import matplotlib.pyplot as plt\n", + "import statsmodels.formula.api as smf\n", + "from pygam import LinearGAM, s, f, GAM\n", "\n", "from utils.db import dbengine\n", - "serenitas_engine = dbengine('serenitasdb')\n", - "\n", + "serenitas_engine = dbengine('serenitasdb')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "%matplotlib inline" ] }, @@ -27,8 +36,8 @@ "outputs": [], "source": [ "value_date = (pd.datetime.today() - pd.offsets.BDay(1)).date()\n", - "index_type = 'HY'\n", - "series = 32" + "index_type = 'XO'\n", + "series = 28" ] }, { @@ -127,36 +136,8 @@ "metadata": {}, "outputs": [], "source": [ - "#Dispersion: std_dev of default_prob/average default_prob\n", - "date_range = pd.bdate_range(value_date - 52 * 4 * pd.offsets.Week(), value_date, freq='5B')\n", - "default_prob = {}\n", - "ontr = on_the_run(index_type, date_range[0])\n", - "index = MarkitBasketIndex(index_type, ontr, ['5yr'])\n", - "for d in date_range:\n", - " if ontr != on_the_run(index_type, d):\n", - " ontr = on_the_run(index_type, d)\n", - " index = MarkitBasketIndex(index_type, ontr, ['5yr'])\n", - " try:\n", - " index.value_date = d\n", - " surv_prob, tickers = index.survival_matrix()\n", - " default_prob[d] = pd.Series(1 - np.ravel(surv_prob), index=tickers)\n", - " except:\n", - " continue\n", - "default_prob = pd.concat(default_prob)\n", - "dispersion = default_prob.unstack(level=0)\n", - "dispersion = dispersion.std()/dispersion.mean()\n", - "dispersion.plot()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ "def gini(array):\n", " \"\"\"Calculate the Gini coefficient of a numpy array.\"\"\"\n", - " array = array.values\n", " # based on bottom eq: http://www.statsdirect.com/help/content/image/stat0206_wmf.gif\n", " # from: http://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm\n", " if np.amin(array) < 0:\n", @@ -165,7 +146,7 @@ " array = np.sort(array) #values must be sorted\n", " index = np.arange(1,array.shape[0]+1) #index per array element\n", " n = array.shape[0]#number of array elements\n", - " return ((np.sum((2 * index - n - 1) * array)) / (n * np.sum(array))) #Gini coefficient" + " return ((np.sum((2 * index - n - 1) * array)) / (n * np.sum(array))) " ] }, { @@ -174,7 +155,159 @@ "metadata": {}, "outputs": [], "source": [ - "#Instead of std dev of spread get Gini Factor default prob\n", + "def get_gini_spreadstdev(row):\n", + " indices = MarkitBasketIndex(row['index'], row.series, [row.tenor], value_date = row.name)\n", + " spreads = indices.spreads()\n", + " spreads = spreads[spreads<1]\n", + " return (gini(spreads), np.std(spreads))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "####################### NAV Basis\n", + "\n", + "# HY | IG\n", + "#+ve index trades risk rich | index trades risk cheap\n", + "#-ve single trades risk rich | single trades risk cheap\n", + "\n", + "sql_string = \"select * from index_quotes where index = %s and tenor = '5yr'\"\n", + "df = pd.read_sql_query(sql_string, serenitas_engine, params=(index_type,), index_col=['date'])\n", + "df[\"dist_on_the_run\"] = df.groupby(\"date\")[\"series\"].transform(\n", + " lambda x: x.max() - x\n", + ")\n", + "df = df.groupby(['date', 'series']).nth(-1) #take the last version\n", + "df['basis'] = df.closespread - df.modelspread if index_type == 'IG' else df.closeprice - df.modelprice\n", + "df.set_index('dist_on_the_run', append=True, inplace=True)\n", + "df.reset_index('series', inplace=True)\n", + "basis = df['basis'].unstack()\n", + "stats = pd.DataFrame([basis.min(), basis.mean(), basis.max(), \n", + " basis.quantile(.01), basis.quantile(.05), basis.quantile(.95), basis.quantile(.99)],\n", + " index=['min', 'mean', 'max', \n", + " '1%tile', '5%tile', '95%tile', '99%tile'])\n", + "stats" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "####################### Get Gini on indices: this calc bombs a lot so let's do the ones that we were able to calc before (dropna)\n", + "df_gini_calc = df.dropna().loc[datetime.date(2019,1,1):, :].reset_index('dist_on_the_run')[\n", + " ['index','series', 'tenor', 'duration', 'basis', 'closespread']]\n", + "temp = df_gini_calc.apply(get_gini_spreadstdev, axis=1)\n", + "temp = pd.DataFrame(temp.values.tolist(), columns=['gini_spread','std_spread'], index=temp.index)\n", + "df_gini_calc = df_gini_calc.merge(temp, left_index=True, right_index=True).dropna()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#######################GLS regression of NAV basis to spread/duration\n", + "#basis_gini_model = smf.gls(\"basis ~ np.log(duration) + np.log(closespread) + np.log(gini_spread)\", data=df_gini_calc).fit()\n", + "#basis_gini_model.summary()\n", + "\n", + "#Let's use a GAM model instead?\n", + "X = np.array(df_gini_calc[['duration', 'closespread', 'gini_spread']])\n", + "y = np.array(df_gini_calc[['basis']])\n", + "\n", + "basis_model = GAM(s(0, constraints='concave') +\n", + " s(1, constraints='concave') +\n", + " s(2, constraints='concave'))\n", + "\n", + "lam = np.logspace(-3, 5, 5, base=10)\n", + "lams = [lam] * 3\n", + "\n", + "basis_model.gridsearch(X, y, lam=lams)\n", + "basis_model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "## plotting\n", + "fig, axs = plt.subplots(1,3);\n", + "\n", + "titles = ['duration', 'closespread', third_variable]\n", + "for i, ax in enumerate(axs):\n", + " XX = basis_model.generate_X_grid(term=i)\n", + " ax.plot(XX[:, i], basis_model.partial_dependence(term=i, X=XX))\n", + " ax.plot(XX[:, i], basis_model.partial_dependence(term=i, X=XX, width=.95)[1], c='r', ls='--')\n", + " if i == 0:\n", + " ax.set_ylim(-30,30)\n", + " ax.set_title(titles[i]);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "############## predict\n", + "predict = basis_model.predict(X)\n", + "plt.scatter(y, predict)\n", + "plt.xlabel('actual basis')\n", + "plt.ylabel('predicted basis')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "############## today's basis\n", + "y[-1], predict[-1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#######################Dispersion: std_dev/mean of default_prob\n", + "date_range = pd.bdate_range(value_date - 52 * 4 * pd.offsets.Week(), value_date, freq='5B')\n", + "default_prob, index_spreads = {}, {}\n", + "for d in date_range:\n", + " try:\n", + " index = MarkitBasketIndex(index_type, on_the_run(index_type, d), ['5yr'], value_date =d)\n", + " surv_prob, tickers = index.survival_matrix()\n", + " spreads = index.spreads()\n", + " spreads = spreads[spreads<1] #filter out crazy spreads\n", + " default_prob[d] = pd.Series(1 - np.ravel(surv_prob), index=tickers)\n", + " index_spreads[d] = pd.Series(spreads, index=tickers)\n", + " except:\n", + " continue\n", + "default_prob = pd.concat(default_prob)\n", + "index_spreads = pd.concat(index_spreads)\n", + "dispersion = default_prob.unstack(level=0)\n", + "dispersion = dispersion.std()/dispersion.mean()\n", + "dispersion_spread = index_spreads.unstack(level=0)\n", + "dispersion_spread = dispersion_spread.std()/dispersion_spread.mean()\n", + "dispersion.plot()\n", + "dispersion_spread.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#Get Gini factor\n", "sql_string = \"select * from index_version where index = %s\"\n", "idx_ver = pd.read_sql_query(sql_string, serenitas_engine, params=[index_type,], parse_dates=['lastdate'])\n", "idx_ver['date'] = pd.to_datetime([d.strftime('%Y-%m-%d') if not pd.isnull(d) else datetime.date(2050,1,1) for d in idx_ver['lastdate']])\n", @@ -188,29 +321,10 @@ "risk.set_index('date', inplace=True) \n", "risk['moneyness'] = risk.apply(lambda df: (df.detach-df.cumulativeloss)/df.indexfactor/df.index_expected_loss, axis=1)\n", "\n", - "single_day_risk = {}\n", - "date_range = pd.bdate_range(value_date - 52 * 5 * pd.offsets.Week(), value_date, freq='5B')\n", - "for d in date_range:\n", - " default_prob={}\n", - " try:\n", - " df = risk.loc[d]\n", - " except:\n", - " continue\n", - " for s in df.series.unique():\n", - " tenors = list(df[df.series==s]['tenor'].sort_values().unique())\n", - " indices = MarkitBasketIndex(index_type, s, tenors)\n", - " try:\n", - " indices.value_date = d\n", - " surv_prob, tickers = indices.survival_matrix()\n", - " default_prob[s] = pd.DataFrame(1 - surv_prob, index=tickers, columns=tenors)\n", - " except:\n", - " continue\n", - " if default_prob:\n", - " default_prob = pd.concat(default_prob, names=['series', 'name'], sort=True)\n", - " default_prob.columns.name = 'tenor'\n", - " gini_coeff = default_prob.stack().groupby(['series', 'tenor']).apply(gini)\n", - " single_day_risk[d] = df.merge(gini_coeff.rename('gini_coeff').reset_index(), on=['series', 'tenor'])\n", - "tranche_risk = pd.concat(single_day_risk, names=['date', 'idx'], sort=True)" + "date_range = pd.bdate_range(value_date - 52 * 3 * pd.offsets.Week(), value_date, freq='5B')\n", + "gini_calc = risk[(risk.index.isin(date_range)) & (risk.attach == 0)]\n", + "temp = gini_calc.apply(get_gini_spreadstdev, axis=1)\n", + "gini_calc[['gini_spread', 'std_spread']] = pd.DataFrame(temp.values.tolist(), columns=['gini_spread','std_spread'], index=temp.index)" ] }, { @@ -219,8 +333,8 @@ "metadata": {}, "outputs": [], "source": [ - "to_plot_gini = tranche_risk[(tranche_risk.tenor == '5yr') & (tranche_risk.attach ==0)].groupby(['date', 'series']).nth(-1)\n", - "to_plot_gini['gini_coeff'].unstack().plot()" + "to_plot_gini = gini_calc[(gini_calc.tenor == '5yr')].groupby(['date', 'series']).nth(-1)\n", + "to_plot_gini['gini_spread'].unstack().plot()" ] }, { @@ -229,11 +343,7 @@ "metadata": {}, "outputs": [], "source": [ - "import statsmodels.formula.api as smf\n", - "equity = tranche_risk[tranche_risk.attach==0]\n", - "#use a subset for modeling purposes?\n", - "equity = equity[(equity.tenor=='5yr') & (equity.series >= 27)]\n", - "gini_model = smf.gls(\"corr_at_detach ~ gini_coeff + duration + moneyness\", data=equity).fit()\n", + "gini_model = smf.gls(\"corr_at_detach ~ gini_spread + duration + moneyness\", data=equity).fit()\n", "gini_model.summary()" ] }, @@ -243,8 +353,8 @@ "metadata": {}, "outputs": [], "source": [ - "predict_today = equity.reset_index()[['gini_coeff', 'duration', 'moneyness']].iloc[-1]\n", - "spread_gls_model.predict(predict_today)" + "predict_today = equity.reset_index()[['gini_spread', 'duration', 'moneyness']].iloc[-1]\n", + "gini_model.predict(predict_today)" ] }, { @@ -254,15 +364,19 @@ "outputs": [], "source": [ "#Let's use a GAM model instead?\n", - "from pygam import LinearGAM, s, f\n", - "X = np.array(equity[['gini_coeff', 'duration', 'moneyness']])\n", + "#only use the 5yr point for modeling\n", + "equity = gini_calc[(gini_calc.tenor=='5yr') & (gini_calc.series >= 23)]\n", + "X = np.array(equity[['gini_spread', 'duration', 'moneyness']])\n", "y = np.array(equity['corr_at_detach'])\n", "\n", - "gam_model = LinearGAM(s(0) + s(1) + s(2))\n", + "#Fit for Lamda\n", + "gam_model = GAM(s(0, n_splines=5) +\n", + " s(1, n_splines=5) +\n", + " s(2, n_splines=5))\n", "lam = np.logspace(-3, 5, 5, base=3)\n", "lams = [lam] * 3\n", - "\n", "gam_model.gridsearch(X, y, lam=lams)\n", + "\n", "gam_model.summary()" ] }, @@ -273,10 +387,9 @@ "outputs": [], "source": [ "## plotting\n", - "plt.figure();\n", "fig, axs = plt.subplots(1,3);\n", "\n", - "titles = ['gini_coeff', 'duration', 'moneyness']\n", + "titles = ['gini_spread', 'duration', 'moneyness']\n", "for i, ax in enumerate(axs):\n", " XX = gam_model.generate_X_grid(term=i)\n", " ax.plot(XX[:, i], gam_model.partial_dependence(term=i, X=XX))\n", @@ -285,6 +398,29 @@ " ax.set_ylim(-30,30)\n", " ax.set_title(titles[i]);" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "predict = gam_model.predict(X)\n", + "plt.scatter(y, predict)\n", + "plt.xlabel('actual correlation')\n", + "plt.ylabel('predicted correlation')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "today = (equity.loc[max(equity.index)])\n", + "predict_HY31 = gam_model.predict(np.array(today[today.series==31][['gini_spread', 'duration', 'moneyness']]))\n", + "today[today.series==31][['corr_at_detach']], predict_HY31" + ] } ], "metadata": { |
