aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--python/optim_alloc.py109
1 files changed, 65 insertions, 44 deletions
diff --git a/python/optim_alloc.py b/python/optim_alloc.py
index 5db00df8..313d37c1 100644
--- a/python/optim_alloc.py
+++ b/python/optim_alloc.py
@@ -1,6 +1,8 @@
import cvxpy
import numpy as np
import math
+from matplotlib import pyplot as plt
+plt.style.use('ggplot')
def cor2cov(Rho, vol):
return np.diag(vol) @ Rho @ np.diag(vol)
@@ -17,53 +19,72 @@ def var(rho, delta, volF):
""" computes the variance of the asset """
return delta**2*volF**2+resid_vol(rho, delta, volF)**2
-volHY = 0.4
-rho = {'CLO': 0.9,
- 'CSO': 0.6,
- 'Subprime': 0.4}
-delta = {'CLO': 0.3,
- 'CSO': 0.4,
- 'Subprime': 1}
+def compute_allocation(rho_clo = 0.9, rho_cso=0.6, rho_subprime=0.2,
+ delta_clo=1.2, delta_cso=0.4, delta_subprime=0.8,
+ mu_HY=0.02, mu_clo=0.08, mu_cso=0.07, mu_subprime=0.25):
+ rho = {'CLO': rho_clo,
+ 'CSO': rho_cso,
+ 'Subprime': rho_subprime}
+ delta = {'CLO': delta_clo,
+ 'CSO': delta_cso,
+ 'Subprime': delta_subprime}
+ assets = ['CLO', 'CSO', 'Subprime']
+ mu = np.array([mu_HY, mu_clo, mu_cso, mu_subprime])
+ u = volHY * np.array([delta[a] for a in assets])
+ Sigma = np.outer(u, u) + np.diag([resid_vol(rho[a], delta[a], volHY)**2
+ for a in ['CLO', 'CSO', 'Subprime']])
+ v = volHY**2 * np.array([1] + [delta[a] for a in assets])
+ Sigma = np.vstack((v, np.c_[v[1:], Sigma]))
+ sharpe = mu/np.sqrt(np.diag(Sigma))
-u = volHY * np.array([delta['CLO'], delta['CSO'], delta['Subprime']])
-Sigma = np.outer(u, u) + np.diag([resid_vol(rho[a], delta[a], volHY)**2
- for a in ['CLO', 'CSO', 'Subprime']])
-v = volHY**2 * np.array([1, delta['CLO'], delta['CSO'], delta['Subprime']])
-Sigma = np.vstack((v, np.c_[v[1:], Sigma]))
+ gamma = cvxpy.Parameter(sign='positive')
+ w = cvxpy.Variable(4)
+ ret = mu.T*w
+ risk = cvxpy.quad_form(w, Sigma)
+ prob = cvxpy.Problem(cvxpy.Maximize(ret-gamma*risk),
+ [cvxpy.sum_entries(w[1:]) - 0.1*w[0] == 1,
+ w[1:] >= 0,
+ w[0] <= 0])
-mu = np.array([0.02, 0.07, 0.08, 0.25])
-sharpe = mu/np.sqrt(np.diag(Sigma))
+ gamma_x = np.linspace(0, 20, 500)
+ W = np.empty((4, gamma_x.size))
+ for i, val in enumerate(gamma_x):
+ gamma.value = val
+ prob.solve()
+ W[:,i] = np.asarray(w.value).squeeze()
-gamma = cvxpy.Parameter(sign='positive')
-w = cvxpy.Variable(4)
-ret = mu.T*w
-risk = cvxpy.quad_form(w, Sigma)
-prob = cvxpy.Problem(cvxpy.Maximize(ret-gamma*risk),
- [cvxpy.sum_entries(w[1:]) - 0.1*w[0] == 1,
- w[1:] >= 0,
- w[0] <= 0])
+ fund_return = mu@W
+ fund_vol= np.array([math.sqrt(W[:,i]@Sigma@W[:,i]) for i in range(gamma_x.size)])
+ return (W, fund_return, fund_vol)
-W = np.empty((4, 100))
-gamma_x = np.linspace(0, 1, 100)
-for i, val in enumerate(gamma_x):
- gamma.value = val
- prob.solve()
- W[:,i] = np.asarray(w.value).squeeze()
+def plot_allocation(W, fund_return, fund_vol):
+ gamma_x = np.linspace(0, 20, fund_return.size)
+ fig, ax1 = plt.subplots()
+ ax1.stackplot(fund_vol, W[1:,], labels=['CLO', 'CSO', 'Subprime'])
+ ax1.set_xlabel('risk factor')
+ ax1.set_ylabel('portfolio weights')
+ ax1.legend()
+ # ax1.text(0.3, 0.82, 'RMBS')
+ # ax1.text(0.5, 0.45, 'CSO')
+ # ax1.text(0.5, 0.15, 'CLO')
+ ax1.set_ylim([0, 1])
+ ax2 = ax1.twinx()
+ ax2.plot(fund_vol, fund_return, lw=1, color="grey")
+ ax2.set_ylabel('fund volatility')
+ plt.show()
-fund_return = mu@X
-fund_vol= np.array([math.sqrt(X[:,i]@Sigma@X[:,i]) for i in range(100)])
+if __name__=="__main__":
+ volHY = 0.07
-from matplotlib import pyplot as plt
-plt.style.use('ggplot')
-fig, ax1 = plt.subplots()
-ax1.stackplot(gamma_x, W[1:,])
-ax1.set_xlabel('risk factor')
-ax1.set_ylabel('portfolio weights')
-ax1.text(0.3, 0.82, 'RMBS')
-ax1.text(0.5, 0.45, 'CSO')
-ax1.text(0.5, 0.15, 'CLO')
-ax1.set_ylim([0, 1])
-ax2 = ax1.twinx()
-ax2.plot(gamma_x, fund_vol, lw=1)
-ax2.set_ylabel('fund volatility')
-plt.show()
+ rho = {'CLO': 0.6,
+ 'CSO': 0.5,
+ 'Subprime': 0.3}
+ delta = {'CLO': 0.4,
+ 'CSO': 0.2,
+ 'Subprime': 0.6}
+ mu = np.array([0.01, 0.075, 0.065, 0.25])
+
+ W, fund_return, fund_vol = compute_allocation(rho['CLO'], rho['CSO'], rho['Subprime'],
+ delta['CLO'], delta['CSO'], delta['Subprime'],
+ mu[0], mu[1], mu[2], mu[3])
+ plot_allocation(W, fund_return, fund_vol)