aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/black.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/analytics/black.py')
-rw-r--r--python/analytics/black.py6
1 files changed, 3 insertions, 3 deletions
diff --git a/python/analytics/black.py b/python/analytics/black.py
index 94f91efb..781732d9 100644
--- a/python/analytics/black.py
+++ b/python/analytics/black.py
@@ -5,7 +5,7 @@ import math
def d1(F, K, sigma, T):
- return (log(F / K) + sigma**2 * T / 2) / (sigma * math.sqrt(T))
+ return (log(F / K) + sigma ** 2 * T / 2) / (sigma * math.sqrt(T))
def d2(F, K, sigma, T):
@@ -40,7 +40,7 @@ def black(F, K, T, sigma, payer=True):
@jit(float64(float64, float64, float64, float64), cache=True, nopython=True)
def Nx(F, K, sigma, T):
- return cnd_erf((log(F/K) - sigma**2 * T / 2) / (sigma * sqrt(T))) / 2
+ return cnd_erf((log(F / K) - sigma ** 2 * T / 2) / (sigma * sqrt(T))) / 2
def bachelier(F, K, T, sigma):
@@ -49,4 +49,4 @@ def bachelier(F, K, T, sigma):
need to multiply by discount factor
"""
d1 = (F - K) / (sigma * sqrt(T))
- return (0.5 * (F - K) * cnd_erf(d1) + sigma * sqrt(T) * norm.pdf(d1))
+ return 0.5 * (F - K) * cnd_erf(d1) + sigma * sqrt(T) * norm.pdf(d1)