aboutsummaryrefslogtreecommitdiffstats
path: root/python/analytics/option.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/analytics/option.py')
-rw-r--r--python/analytics/option.py120
1 files changed, 120 insertions, 0 deletions
diff --git a/python/analytics/option.py b/python/analytics/option.py
new file mode 100644
index 00000000..32f4f947
--- /dev/null
+++ b/python/analytics/option.py
@@ -0,0 +1,120 @@
+from .black import black
+from .utils import GHquad
+from yieldcurve import roll_yc
+from pandas.tseries.offsets import BDay
+
+class Option:
+ def __init__(self, index, exercise_date, strike, option_type="payer"):
+ self.index = index
+ self._exercise_date = exercise_date
+ self._forward_yc = roll_yc(self.index._yc, self.exercise_date)
+ self.exercise_date_settle = (pd.Timestamp(self.exercise_date) + 3* BDay()).date()
+ self._T = None
+ self.strike = strike
+ self.option_type = option_type.lower()
+ self._Z, self._w = GHquad(50)
+ self.notional = 1
+
+ @property
+ def exercise_date(self):
+ return self._exercise_date
+
+ @exercise_date.setter
+ def exercise_date(self, d : datetime.date):
+ self._exercise_date = d
+ self.exercise_date_settle = (pd.Timestamp(d) + 3* BDay()).date()
+ self._forward_yc = roll_yc(self.index._yc, self.exercise_date)
+
+ @property
+ def pv(self):
+ fp = self.index.forward_pv(self.exercise_date) / self.index.notional
+ T = self.T
+ tilt = np.exp(-self.sigma**2/2 * T + self.sigma * self._Z * math.sqrt(T))
+ rolled_curve = roll_yc(self.index._yc, self.exercise_date)
+ args = (fp, self.exercise_date, self.exercise_date_settle,
+ self.index, self._forward_yc, tilt, self._w)
+ eta = 1.1
+ a = self.index.spread
+ b = self.index.spread * eta
+ while True:
+ if calib(*((b,) + args)) > 0:
+ break
+ b *= eta
+
+ S0 = brentq(calib, a, b, args)
+
+ G = g(self.index, self.strike, self.exercise_date)
+ if T == 0:
+ pv = self.notional * (g(self.index, self.index.spread, self.exercise_date) - G)
+ if self.option_type == "payer":
+ return pv if self.index.spread > self.strike else 0
+ else:
+ return - pv if self.index.spread < self.strike else 0
+
+ Zstar = (math.log(self.strike/S0) + self.sigma**2/2 * T) / \
+ (self.sigma * math.sqrt(T))
+
+ if self.option_type == "payer":
+ Z = Zstar + np.logspace(0, 1.5, 300) - 1
+ elif self.option_type == "receiver":
+ Z = Zstar - np.logspace(0, 1.5, 300) + 1
+ else:
+ raise ValueError("option_type needs to be either 'payer' or 'receiver'")
+ S = S0 * np.exp(-self.sigma**2/2 * T + self.sigma * Z * math.sqrt(T))
+ a, b = strike_vec(S * 1e-4, rolled_curve, self.exercise_date,
+ self.exercise_date_settle,
+ self.index.start_date, self.index.end_date, self.index.recovery)
+ val = ((a - b * self.index.fixed_rate*1e-4) - G) * 1/math.sqrt(2*math.pi) * np.exp(-Z**2/2)
+ df_scale = self.index._yc.discount_factor(self.exercise_date_settle)
+ return self.notional * simps(val, Z) * df_scale
+
+ @property
+ def pv2(self):
+ G = g(self.index, self.strike, self.exercise_date)
+ fp = self.index.forward_pv(self.exercise_date) / self.index.notional
+ forward_annuity = self.index.forward_annuity(self.exercise_date)
+ DA_forward_spread = fp / forward_annuity + self.index.fixed_rate * 1e-4
+ strike_tilde = self.index.fixed_rate * 1e-4 + G / forward_annuity
+ return forward_annuity * black(DA_forward_spread,
+ strike_tilde,
+ self.T,
+ self.sigma,
+ self.option_type) * self.notional
+
+ @property
+ def delta(self):
+ old_index_pv = self.index.pv
+ old_pv = self.pv
+ self.index.spread += 0.1
+ notional_ratio = self.index.notional/self.notional
+ delta = (self.pv - old_pv)/(self.index.pv - old_index_pv) * notional_ratio
+ self.index.spread -= 0.1
+ return delta
+
+
+ @property
+ def T(self):
+ if self._T:
+ return self._T
+ else:
+ return year_frac(self.index.trade_date, self.exercise_date) + 1/365
+
+ @property
+ def gamma(self):
+ pass
+
+ @property
+ def theta(self):
+ old_pv = self.pv
+ self._T = self.T - 1/365
+ theta = self.pv - old_pv
+ self._T = None
+ return theta
+
+ @property
+ def vega(self):
+ old_pv = self.pv
+ self.sigma += 0.01
+ vega = self.pv - old_pv
+ self.sigma -= 0.01
+ return vega