diff options
Diffstat (limited to 'python/analytics/option.py')
| -rw-r--r-- | python/analytics/option.py | 120 |
1 files changed, 120 insertions, 0 deletions
diff --git a/python/analytics/option.py b/python/analytics/option.py new file mode 100644 index 00000000..32f4f947 --- /dev/null +++ b/python/analytics/option.py @@ -0,0 +1,120 @@ +from .black import black +from .utils import GHquad +from yieldcurve import roll_yc +from pandas.tseries.offsets import BDay + +class Option: + def __init__(self, index, exercise_date, strike, option_type="payer"): + self.index = index + self._exercise_date = exercise_date + self._forward_yc = roll_yc(self.index._yc, self.exercise_date) + self.exercise_date_settle = (pd.Timestamp(self.exercise_date) + 3* BDay()).date() + self._T = None + self.strike = strike + self.option_type = option_type.lower() + self._Z, self._w = GHquad(50) + self.notional = 1 + + @property + def exercise_date(self): + return self._exercise_date + + @exercise_date.setter + def exercise_date(self, d : datetime.date): + self._exercise_date = d + self.exercise_date_settle = (pd.Timestamp(d) + 3* BDay()).date() + self._forward_yc = roll_yc(self.index._yc, self.exercise_date) + + @property + def pv(self): + fp = self.index.forward_pv(self.exercise_date) / self.index.notional + T = self.T + tilt = np.exp(-self.sigma**2/2 * T + self.sigma * self._Z * math.sqrt(T)) + rolled_curve = roll_yc(self.index._yc, self.exercise_date) + args = (fp, self.exercise_date, self.exercise_date_settle, + self.index, self._forward_yc, tilt, self._w) + eta = 1.1 + a = self.index.spread + b = self.index.spread * eta + while True: + if calib(*((b,) + args)) > 0: + break + b *= eta + + S0 = brentq(calib, a, b, args) + + G = g(self.index, self.strike, self.exercise_date) + if T == 0: + pv = self.notional * (g(self.index, self.index.spread, self.exercise_date) - G) + if self.option_type == "payer": + return pv if self.index.spread > self.strike else 0 + else: + return - pv if self.index.spread < self.strike else 0 + + Zstar = (math.log(self.strike/S0) + self.sigma**2/2 * T) / \ + (self.sigma * math.sqrt(T)) + + if self.option_type == "payer": + Z = Zstar + np.logspace(0, 1.5, 300) - 1 + elif self.option_type == "receiver": + Z = Zstar - np.logspace(0, 1.5, 300) + 1 + else: + raise ValueError("option_type needs to be either 'payer' or 'receiver'") + S = S0 * np.exp(-self.sigma**2/2 * T + self.sigma * Z * math.sqrt(T)) + a, b = strike_vec(S * 1e-4, rolled_curve, self.exercise_date, + self.exercise_date_settle, + self.index.start_date, self.index.end_date, self.index.recovery) + val = ((a - b * self.index.fixed_rate*1e-4) - G) * 1/math.sqrt(2*math.pi) * np.exp(-Z**2/2) + df_scale = self.index._yc.discount_factor(self.exercise_date_settle) + return self.notional * simps(val, Z) * df_scale + + @property + def pv2(self): + G = g(self.index, self.strike, self.exercise_date) + fp = self.index.forward_pv(self.exercise_date) / self.index.notional + forward_annuity = self.index.forward_annuity(self.exercise_date) + DA_forward_spread = fp / forward_annuity + self.index.fixed_rate * 1e-4 + strike_tilde = self.index.fixed_rate * 1e-4 + G / forward_annuity + return forward_annuity * black(DA_forward_spread, + strike_tilde, + self.T, + self.sigma, + self.option_type) * self.notional + + @property + def delta(self): + old_index_pv = self.index.pv + old_pv = self.pv + self.index.spread += 0.1 + notional_ratio = self.index.notional/self.notional + delta = (self.pv - old_pv)/(self.index.pv - old_index_pv) * notional_ratio + self.index.spread -= 0.1 + return delta + + + @property + def T(self): + if self._T: + return self._T + else: + return year_frac(self.index.trade_date, self.exercise_date) + 1/365 + + @property + def gamma(self): + pass + + @property + def theta(self): + old_pv = self.pv + self._T = self.T - 1/365 + theta = self.pv - old_pv + self._T = None + return theta + + @property + def vega(self): + old_pv = self.pv + self.sigma += 0.01 + vega = self.pv - old_pv + self.sigma -= 0.01 + return vega |
