diff options
Diffstat (limited to 'python/bbg_newids.py')
| -rw-r--r-- | python/bbg_newids.py | 64 |
1 files changed, 64 insertions, 0 deletions
diff --git a/python/bbg_newids.py b/python/bbg_newids.py new file mode 100644 index 00000000..fe317c17 --- /dev/null +++ b/python/bbg_newids.py @@ -0,0 +1,64 @@ +from sqlalchemy import create_engine +import pandas as pd +from db import conn +import numpy as np +from bbg_helper import init_bbgsession, retreive_data, process_msgs + +engine = create_engine('postgresql://et_user:Serenitas1@debian/ET') + +session = init_bbg_session('192.168.1.108', 8194) + +all_fields = ["ISSUE_DT", "LN_ISSUE_STATUS", "ID_CUSIP", "ID_BB_UNIQUE", + "SECURITY_TYP", "AMT_OUTSTANDING", "PX_LAST","LAST_UPDATE_DT", + "ISSUER", "MATURITY","CPN","CPN_TYP", "CPN_FREQ","FLT_SPREAD", + "LIBOR_FLOOR","LN_CURRENT_MARGIN", "LN_TRANCHE_SIZE", "AMT_ISSUED", + "LN_COVENANT_LITE","SECOND_LIEN_INDICATOR","DEFAULTED", "DEFAULT_DATE", + "CALLED", "CALLED_DT", "PRICING_SOURCE"] + +# append securities to request +currentdata = pd.read_sql_query("select id_bb_unique, substring(id_bb_unique from 3) as cusip " \ + "from bloomberg_corp_ref", engine, index_col='cusip') + +mapping = pd.read_csv("/home/share/CorpCDOs/data/bbg_loanxid.csv", index_col=0) +mapping = mapping.ix[mapping.index.difference(currentdata.index)] + +securities = ["{0} Corp".format(cusip) for cusip in mapping.index] +data = retreive_data(session, securities, fields) +df = process_msgs(data, all_fields) +df.security = df.security.str.slice(0,9) +df.set_index('security', inplace=True) +df['loanxid'] = mapping['loanxid'] +df.reset_index(inplace=True) + +sqlstr = "INSERT INTO bloomberg_corp_ref VALUES({0})".format(",".join(["%s"]*20)) +with conn.cursor() as c: + for i in range(df.shape[0]): + issue_size = df.iloc[i]['LN_TRANCHE_SIZE'] + if np.isnan(issue_size): + issue_size = df.iloc[i]['AMT_ISSUED'] + if np.isnan(issue_size): + issue_size = None + c.execute(sqlstr, + (df.iloc[i]['ID_BB_UNIQUE'], df.iloc[i]['ID_CUSIP'], df.iloc[i]['ISSUER'], + df.iloc[i]['MATURITY'], df.iloc[i]['CPN'], df.iloc[i]['CPN_TYP'], + df.iloc[i]['CPN_FREQ'], df.iloc[i]['FLT_SPREAD'], df.iloc[i]['LIBOR_FLOOR'], + issue_size, df.iloc[i]["LN_COVENANT_LITE"], df.iloc[i]["SECOND_LIEN_INDICATOR"], + df.iloc[i]["SECURITY_TYP"], df.iloc[i]["ISSUE_DT"], df.iloc[i]["DEFAULTED"], + df.iloc[i]["DEFAULT_DATE"], df.iloc[i]["CALLED"], df.iloc[i]["CALLED_DT"], + df.iloc[i]["LN_ISSUE_STATUS"], [df.iloc[i]['loanxid']]) + ) +conn.commit() + +sqlstr = "INSERT INTO bloomberg_corp VALUES(%s, %s, %s, %s, %s, %s)" +with conn.cursor() as c: + for i in range(df.shape[0]): + margin = df.iloc[i]['LN_CURRENT_MARGIN'] + if np.isnan(margin): + margin = None + amt_outstanding = df.iloc[i]['AMT_OUTSTANDING'] + if np.isnan(amt_outstanding): + amt_outstanding = None + c.execute(sqlstr, (df.iloc[i]['ID_BB_UNIQUE'], df.iloc[i]['LAST_UPDATE_DT'], + df.iloc[i]['PX_LAST'], margin, amt_outstanding, + df.iloc[i]['PRICING_SOURCE'])) +conn.commit() |
