aboutsummaryrefslogtreecommitdiffstats
path: root/python/exploration/beta_trade.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/exploration/beta_trade.py')
-rw-r--r--python/exploration/beta_trade.py41
1 files changed, 16 insertions, 25 deletions
diff --git a/python/exploration/beta_trade.py b/python/exploration/beta_trade.py
index 8f6825ef..b26eeedb 100644
--- a/python/exploration/beta_trade.py
+++ b/python/exploration/beta_trade.py
@@ -11,36 +11,27 @@ from statsmodels.tsa.ar_model import AR
import matplotlib.pyplot as plt
-def calc_returns(save_feather=False, index_pair=['HY','IG']):
- returns = (index_returns(index=['EU','IG', 'HY'],tenor='5yr',years=None).
- reset_index(['tenor','series'],drop=True))
- returns1 = {}
- returns1[index_pair[0]] = (returns.
- xs(index_pair[0], level=1).
- dropna().
- groupby(level=['date'], as_index=False).
- nth(-1))
- returns1[index_pair[1]] = returns.xs(index_pair[1], level=1)
- df = pd.merge(returns1[index_pair[0]],returns1[index_pair[1]],
- left_index=True,right_index=True,
- suffixes=('_'+index_pair[0],'_'+index_pair[1]))
- returns = df[['price_return_'+index_pair[0], 'price_return_'+index_pair[1]]]
- returns.columns = [index_pair[0], index_pair[1]]
- min_date = max(pd.Timestamp('20090320'),returns.index.min()[0])
- returns = returns.dropna()[min_date:]
+def calc_returns(index_list=['HY', 'IG'], save_feather=False):
+ returns = (index_returns(index=index_list, tenor='5yr', years=None).
+ reset_index(['tenor','series'], drop=True).
+ set_index(['date', 'maturity'], append=True).
+ swaplevel(1, 0))
+ returns = returns.unstack(level='index').dropna()
+ returns = returns.groupby(level='date').nth(-1)['price_return']
if save_feather:
feather.write_dataframe(returns.reset_index(),
os.path.join(os.environ["DATA_DIR"], "index_returns.fth"))
- return returns.reset_index('maturity', drop=True)
+ return returns
-def calc_betas(returns=None, spans=[5, 20], index_pair=['HY','IG']):
+def calc_betas(returns=None, spans=[5, 20], index_list=['HY', 'IG']):
if returns is None:
- returns = calc_returns(index_pair=index_pair)
- return [(returns.
- ewm(span=span).
- cov().
- groupby(level='date').
- apply(lambda df: df.values[0,1]/df.values[1,1])) for span in spans]
+ returns = calc_returns(index_list=index_list)
+
+ return pd.concat([(returns.
+ ewm(span=span).
+ cov().
+ groupby(level='date').
+ apply(lambda df: df / np.diag(df))) for span in spans], axis=1, keys=spans)
def plot_betas(betas=None):
spans = [5, 20]