aboutsummaryrefslogtreecommitdiffstats
path: root/python/exploration
diff options
context:
space:
mode:
Diffstat (limited to 'python/exploration')
-rw-r--r--python/exploration/test_cms.py137
1 files changed, 27 insertions, 110 deletions
diff --git a/python/exploration/test_cms.py b/python/exploration/test_cms.py
index 205ca670..31c96029 100644
--- a/python/exploration/test_cms.py
+++ b/python/exploration/test_cms.py
@@ -1,113 +1,30 @@
-from analytics.cms_spread import (
- quantlib_model, globeop_model, build_spread_index, VolatilityType,
- get_swaption_vol_data, get_swaption_vol_matrix)
-from yieldcurve import YC
+from analytics.cms_spread import CmsSpread
+from pathlib import Path
+import os
import pandas as pd
-from quantlib.time.api import Date, Period, Years, Days, ModifiedFollowing
-from quantlib.cashflows.cms_coupon import CmsCoupon
-from quantlib.experimental.coupons.cms_spread_coupon import (
- CmsSpreadCoupon, CappedFlooredCmsSpreadCoupon)
-import datetime
-import math
-# swap_index_30y2y, yc = build_spread_index(30, 2)
-# cap = 0.00758
-# corr = 0.8
-# r = []
-# maturity = pd.Timestamp("2020-01-19")
-# today = pd.Timestamp.today()
-# for d in pd.bdate_range("2018-01-19", today, closed="left", normalize=True):
-# d = pd.Timestamp("2018-01-19")
-# yc.link_to(YC(evaluation_date=d.date()))
-# yc.extrapolation = True
-# if d == pd.Timestamp("2018-02-16"):
-# continue
-# capped_floored_cms_spread_coupon_ln = \
-# quantlib_model(d, swap_index_30y2y, yc, cap, corr, maturity)
-# rate1 = capped_floored_cms_spread_coupon_ln.rate
-# cms_spread_coupon_n = quantlib_model(d, swap_index_30y2y, yc, cap, corr, maturity,
-# VolatilityType.Normal)
-# rate2 = cms_spread_coupon_n.rate
-# rate3 = globeop_model(d, swap_index_30y2y, yc, cap, corr - 0.075, maturity)
-# # df = pd.DataFrame(r, columns=['date', 'QL_ln', 'QL_n', 'Globeop']).set_index('date')
+DAILY_DIR = Path(os.environ["DAILY_DIR"])
+r = []
+today = pd.Timestamp.today()
+trade = CmsSpread.from_tradeid(1)
+dr = pd.bdate_range("2018-01-19", today, closed="left", normalize=True)
+for d in dr:
+ trade.value_date = d
+ r.append(trade.pv)
-# try to get convexity adjustement
-from quantlib.indexes.swap.usd_libor_swap import UsdLiborSwapIsdaFixAm
-from quantlib.cashflows.conundrum_pricer import AnalyticHaganPricer, YieldCurveModel
-from quantlib.quotes import SimpleQuote
-from quantlib.time.api import Actual365Fixed
-# trade_date = datetime.date(2018, 1, 19)
-trade_date = datetime.date(2018, 8, 23)
-maturity = Date.from_datetime(trade_date) + Period(2, Years)
-spread_index, yc = build_spread_index(30, 2)
-yc.link_to(YC(evaluation_date=trade_date))
-yc.extrapolation = True
-fixing_date = spread_index.fixing_calendar.adjust(maturity, ModifiedFollowing)
-payment_date = spread_index.fixing_calendar.advance(fixing_date, 2, Days)
-accrued_end_date = payment_date
-accrued_start_date = accrued_end_date - Period(1, Years)
-
-cap = 0.00758
-cms2y30y_cap = CappedFlooredCmsSpreadCoupon(
- payment_date,
- 100_000_000,
- start_date=accrued_start_date,
- end_date=accrued_end_date,
- fixing_days=spread_index.fixing_days,
- index=spread_index,
- gearing=1.,
- spread=-cap,
- floor=0.,
- day_counter=Actual365Fixed(),
- is_in_arrears=True)
-
-date, surf = get_swaption_vol_data(date=trade_date, vol_type=VolatilityType.ShiftedLognormal)
-atm_vol = get_swaption_vol_matrix(trade_date, surf)
-μ = SimpleQuote(0.1)
-from quantlib.experimental.coupons.lognormal_cmsspread_pricer import LognormalCmsSpreadPricer
-corr = SimpleQuote(0.8)
-cms_pricer = AnalyticHaganPricer(atm_vol, YieldCurveModel.Standard, μ)
-spread_pricer = LognormalCmsSpreadPricer(
- cms_pricer,
- corr,
- integration_points=20)
-cms2y30y_cap.set_pricer(spread_pricer)
-fixing_time = atm_vol.time_from_reference(cms2y30y_cap.fixing_date)
-cms30y = CmsCoupon(payment_date,
- 100_000_000,
- start_date=accrued_start_date,
- end_date=accrued_end_date,
- fixing_days=2,
- index=spread_index.swap_index1,
- is_in_arrears=True)
-cms2y = CmsCoupon(payment_date,
- 100_000_000,
- start_date=accrued_start_date,
- end_date=accrued_end_date,
- fixing_days=2,
- index=spread_index.swap_index2,
- is_in_arrears=True)
-cms30y.set_pricer(cms_pricer)
-cms2y.set_pricer(cms_pricer)
-s1 = cms30y.index_fixing
-s2 = cms2y.index_fixing
-adjusted1 = cms30y.rate
-adjusted2 = cms2y.rate
-import math
-T_alpha = atm_vol.time_from_reference(cms2y30y_cap.fixing_date)
-mu1 = 1 / T_alpha * math.log(adjusted1 / s1)
-mu2 = 1 / T_alpha * math.log(adjusted2 / s2)
-vol1 = atm_vol.volatility(cms2y.fixing_date, spread_index.swap_index1.tenor, s1)
-vol2 = atm_vol.volatility(cms30y.fixing_date, spread_index.swap_index2.tenor, s2)
-mu_x = (mu1 - 0.5 * vol1 ** 2) * T_alpha
-mu_y = (mu2 - 0.5 * vol2 ** 2) * T_alpha
-sigma_x = vol1 * math.sqrt(T_alpha)
-sigma_y = vol2 * math.sqrt(T_alpha)
-
-from scipy.special import roots_hermitenorm
-from analytics.cms_spread import h_call, h_put
-import numpy as np
-x, w = roots_hermitenorm(16)
-val_put = 1/math.sqrt(2*math.pi) * np.dot(w, h_put(x, cap, s1, s2, mu_x, mu_y, sigma_x, sigma_y, corr.value))
-val_call = 1/math.sqrt(2*math.pi) * np.dot(w, h_call(x, cap, s1, s2, mu_x, mu_y, sigma_x, sigma_y, corr.value))
-print(cms2y30y_cap.rate, cms2y30y_cap.underlying.rate + val_put, val_call)
+def gs_navs(trade_id='LTAAB4ZN3333L6TTSH7.0.0.0'):
+ # load gs navs for a given trade
+ dates = []
+ r = []
+ for fname in (DAILY_DIR / "GS_reports").glob("Trade_Detail*.xls"):
+ m = re.match("[^\d]*(\d{2}_.{3}_\d{4})", fname.name)
+ if m:
+ date_string, = m.groups()
+ dates.append(datetime.datetime.strptime(date_string, "%d_%b_%Y"))
+ df = pd.read_excel(fname, skiprows=9, skipfooter=77)
+ r.append(df.set_index('Trade Id').loc[trade_id, 'NPV (USD)'])
+ s = pd.Series(r, dates)
+ s = s.sort_index()
+ #remove the IA until it settled
+ s[:2] -= 68750.00
+ return -s