aboutsummaryrefslogtreecommitdiffstats
path: root/python/external_deriv_marks.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/external_deriv_marks.py')
-rw-r--r--python/external_deriv_marks.py67
1 files changed, 44 insertions, 23 deletions
diff --git a/python/external_deriv_marks.py b/python/external_deriv_marks.py
index 68664cdb..0690d87c 100644
--- a/python/external_deriv_marks.py
+++ b/python/external_deriv_marks.py
@@ -6,6 +6,9 @@ from collateral.baml_isda import load_excel
from collateral.citi import load_pdf, get_col
from dates import bus_day
+# local_nav is the nav in the trade's own currency
+COLUMNS = ["trade_date", "buy/sell", "notional", "local_nav", "base_nav", "ia"]
+
def gs_navs(date: datetime.date = None, fund: str = "Serenitas"):
d = {}
@@ -24,11 +27,12 @@ def gs_navs(date: datetime.date = None, fund: str = "Serenitas"):
"Trade Date",
"Buy/Sell",
"Notional (USD)",
+ "NPV (Base CCY)",
"NPV (USD)",
"Initial Margin Required",
]
]
- df.columns = ["trade_date", "buy/sell", "notional", "nav", "ia"]
+ df.columns = COLUMNS
name = fname.name.replace("9972734", "")
if m := re.match(r"[^\d]*(\d{2}_.{3}_\d{4})", name):
(date_string,) = m.groups()
@@ -37,9 +41,9 @@ def gs_navs(date: datetime.date = None, fund: str = "Serenitas"):
if d:
df = pd.concat(d)
# nav is from Goldman's point of view
- df.nav *= -1.0
+ df[["local_nav", "base_nav"]] *= -1.0
else:
- df = pd.DataFrame(columns=["trade_date", "buy/sell", "notional", "nav", "ia"])
+ df = pd.DataFrame(columns=COLUMNS)
return df
@@ -55,11 +59,11 @@ def ms_navs(date: datetime.date = None, fund: str = "Serenitas"):
"pay_rec",
"notional_in_trade_ccy",
"exposure_in_rpt_ccy",
- "collat_req_in_rpt_ccy",
+ "exposure_in_rpt_ccy",
+ "upfront_in_rpt_ccy",
]
]
- df.columns = ["trade_date", "buy/sell", "notional", "nav", "ia"]
- df.ia = df.nav - df.ia
+ df.columns = COLUMNS
if m := re.match(r"[^\d]*(\d{8})", fname.name):
(date_string,) = m.groups()
date = datetime.datetime.strptime(date_string, "%Y%m%d")
@@ -67,7 +71,7 @@ def ms_navs(date: datetime.date = None, fund: str = "Serenitas"):
if d:
df = pd.concat(d)
else:
- df = pd.DataFrame(columns=["trade_date", "buy/sell", "notional", "nav", "ia"])
+ df = pd.DataFrame(columns=COLUMNS)
return df
@@ -82,9 +86,16 @@ def citi_navs(date: datetime.date = None, **kwargs):
["Value Date", "Operations File"]
)
df = df[
- ["Trade Date", "Party Position", "Notional", "Market Value", "BasicAmt"]
+ [
+ "Trade Date",
+ "Party Position",
+ "Notional",
+ "Market Value",
+ "Market Value",
+ "BasicAmt",
+ ]
]
- df.columns = ["trade_date", "buy/sell", "notional", "nav", "ia"]
+ df.columns = COLUMNS
dfs.append(df)
# there can be multiple files per day, we take the latest one
df = (
@@ -94,7 +105,7 @@ def citi_navs(date: datetime.date = None, **kwargs):
.last()
)
# nav is from Citi's point of view
- df.nav *= -1.0
+ df[["local_nav", "base_nav"]] *= -1.0
return df
@@ -106,13 +117,15 @@ def baml_navs(date: datetime.date = None, fund: str = "Serenitas"):
):
df = load_excel(fname)
df = df.set_index(["Market Value Date", "Trade ID"])
- df = df[["Trade Date", "Buy/Sell", "Notional 1", "MTM(USD)", "ia",]]
- df.columns = ["trade_date", "buy/sell", "notional", "nav", "ia"]
+ df = df[
+ ["Trade Date", "Buy/Sell", "Notional 1", "local_nav", "base_nav", "ia",]
+ ]
+ df.columns = COLUMNS
dfs.append(df)
if dfs:
df = pd.concat(dfs)
else:
- df = pd.DataFrame(columns=["trade_date", "buy/sell", "notional", "nav", "ia"])
+ df = pd.DataFrame(columns=COLUMNS)
return df
@@ -132,18 +145,19 @@ def bnp_navs(date: datetime.date = None, fund: str = "Serenitas"):
"Trade Date",
"Buy/Sell",
"Notional 1",
+ "Exposure Amount",
"Exposure Amount (Agmt Ccy)",
"Lock Up (Agmt Ccy)",
]
]
- df.columns = ["trade_date", "buy/sell", "notional", "nav", "ia"]
+ df.columns = COLUMNS
d[datetime.datetime.strptime(fname.stem[-8:], "%Y%m%d").date()] = df
if d:
df = pd.concat(d)
# nav is from BNP's point of view
- df.nav -= -1.0
+ df[["local_nav", "base_nav"]] *= -1.0
else:
- df = pd.DataFrame(columns=["trade_date", "buy/sell", "notional", "nav", "ia"])
+ df = pd.DataFrame(columns=COLUMNS)
return df
@@ -163,15 +177,15 @@ def cs_navs(date: datetime.date = None, **kwargs):
df["Order No"] = df["Order No"].astype("str")
df["Trade Date"] = pd.to_datetime(df["Trade Date"])
df = df.set_index("Order No")
- df = df[["Trade Date", "Buy/Sell", "Notional", "Mid Price"]]
- df.columns = ["trade_date", "buy/sell", "notional", "nav"]
+ df = df[["Trade Date", "Buy/Sell", "Notional", "Mid Price", "Mid Price"]]
+ df.columns = COLUMNS[:-1]
# TODO: fix this
df_ia = get_ia(date)
df = df.join(df_ia)
d[datetime.datetime.strptime(fname.stem.split("_")[1], "%b%d%Y").date()] = df
df = pd.concat(d)
# nav is from CS's point of view
- df.nav *= -1.0
+ df[["local_nav", "base_nav"]] *= -1.0
return df
@@ -245,11 +259,18 @@ if __name__ == "__main__":
logger.debug(df)
with dbconn("dawndb") as conn:
with conn.cursor() as c:
- for k, v in df[["nav", "ia"]].iterrows():
+ for k, v in df[["local_nav", "base_nav", "ia"]].iterrows():
c.execute(
"INSERT INTO external_marks_deriv "
- "VALUES(%s, %s, %s, %s, %s) "
+ "VALUES(%s, %s, %s, %s, %s, %s) "
"ON CONFLICT (identifier, date) "
- "DO UPDATE SET nav=excluded.nav, ia=excluded.ia",
- (*k, float(v.nav), cp, float(v.ia)),
+ "DO UPDATE SET local_nav=excluded.local_nav, "
+ "base_nav=excluded.base_nav, ia=excluded.ia",
+ (
+ *k,
+ float(v.local_nav),
+ float(v.base_nav),
+ cp,
+ float(v.ia),
+ ),
)