aboutsummaryrefslogtreecommitdiffstats
path: root/python/globeop_reports.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/globeop_reports.py')
-rw-r--r--python/globeop_reports.py68
1 files changed, 48 insertions, 20 deletions
diff --git a/python/globeop_reports.py b/python/globeop_reports.py
index 9ac2d013..55f21325 100644
--- a/python/globeop_reports.py
+++ b/python/globeop_reports.py
@@ -35,15 +35,6 @@ def get_portfolio(report_date = None):
return df
-def curr_port_PNL(date = datetime.date.today(), asset_class='Subprime'):
- date = (date - off.MonthEnd(1)).date()
- sql_string = "SELECT * FROM risk_positions(%s, %s) WHERE notional > 0"
- df_positions = pd.read_sql_query(sql_string, dbengine('dawndb'), params=[date, asset_class])
- df_pnl = get_monthly_pnl()[:date]
- df_all = df_positions.merge(df_pnl.groupby('identifier').sum().reset_index(), on=['identifier'])
- return df_all
-
-
def trade_performance():
sql_string = "SELECT * FROM bonds"
df_trades = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates={'lastupdate': {'utc': True}, 'trade_date': {}, 'settle_date': {}})
@@ -133,10 +124,11 @@ def get_rmbs_pos_df(date = None):
df = df.sort_index().loc[:end_date]
df = df[(df.port == 'MORTGAGES') &
(df.endbookmv > 0) &
- (df['invid'].str.len() == 9)]
+ (df.custacctname == 'V0NSCLMAMB') &
+ (df['invid'].str.len() >= 9)]
sql_string = "SELECT distinct timestamp FROM priced where normalization = 'current_notional'"
timestamps = pd.read_sql_query(sql_string, engine)
- df = df[['endbooknav', 'endlocalmarketprice', 'identifier']]
+ df = df[['endbookmv', 'endlocalmarketprice', 'identifier']]
calc_df = pd.DataFrame()
for d, g in df.groupby(pd.Grouper(freq='M')):
@@ -153,7 +145,6 @@ def get_rmbs_pos_df(date = None):
sql_string = """
SELECT date(timestamp) as timestamp, cusip, model_version, pv, moddur, delta_yield, delta_ir
FROM priced where date(timestamp) = %s
- and normalization ='current_notional'
and model_version <> 2
and model_id_sub = %s"""
params_list = [model_date, model_id]
@@ -161,25 +152,62 @@ def get_rmbs_pos_df(date = None):
sql_string = """
SELECT date(timestamp) as timestamp, cusip, model_version, pv, moddur, delta_yield, delta_ir
FROM priced where date(timestamp) = %s
- and model_version <> 2
- and normalization ='current_notional'"""
+ and model_version <> 2"""
params_list = [model_date]
model = pd.read_sql_query(sql_string, engine, parse_dates=['timestamp'],
params=params_list)
- comb_g = g.loc[d].groupby('identifier').agg({'endbooknav': np.sum,
+ model = model[model.pv != 0]
+ comb_g = g.loc[d].groupby('identifier').agg({'endbookmv': np.sum,
'endlocalmarketprice': np.mean})
model = pd.merge(comb_g, model, left_on = 'identifier', right_on='cusip')
positions = model.set_index(['cusip', 'model_version']).unstack(1).dropna()
- positions = positions[positions.pv.iloc[:,0] != 0]
v1 = positions.xs(1, level='model_version', axis=1)
v3 = positions.xs(3, level='model_version', axis=1)
- v3 = v3.assign(curr_ntl = v3.endbooknav/v3.endlocalmarketprice *100)
+ v3 = v3.assign(curr_ntl = v3.endbookmv/v3.endlocalmarketprice *100)
v3 = v3.assign(b_yield = v3.moddur.apply(lambda x:
float(yc.zero_rate(x)) - libor))
v3.b_yield += np.minimum((v1.pv / v1.endlocalmarketprice * 100)
- ** (1/v1.moddur) - 1, 10).dropna()
- v3.delta_yield = v3.delta_yield * (v3.endlocalmarketprice/100)/ v3.pv * v3.curr_ntl
- v3.delta_ir = v3.delta_ir * np.minimum(1, 1/v3.moddur) * (v3.endlocalmarketprice/100)/ v3.pv * v3.curr_ntl
+ ** (1/v1.moddur) - 1, 1).dropna()
+ v3.delta_yield *= v3.endbookmv / v3.pv
+ v3.delta_ir *= np.minimum(1, 1/v3.moddur) * (v3.endlocalmarketprice/100)/ v3.pv * v3.curr_ntl
calc_df = calc_df.append(v3)
return calc_df.reset_index().set_index('timestamp').sort_index()
+
+def get_clo_pos_df(date = None):
+
+ etengine = dbengine('etdb')
+ dawnengine = dbengine('dawndb')
+ end_date = pd.datetime.today() - MonthEnd(1)
+
+ if date is not None:
+ date = date + MonthEnd(0)
+ df = get_portfolio(date)
+ df = df.sort_index().loc[:end_date]
+ df = df[(df.port == 'CLO') &
+ (df.endbookmv > 0) &
+ (df.custacctname == 'V0NSCLMAMB') &
+ (df['invid'].str.len() >= 9)]
+ df = df[['endbookmv', 'endlocalmarketprice', 'identifier']]
+ sql_string = "select distinct cusip, identifier from bonds where asset_class = 'CLO'"
+ cusip_map = pd.read_sql_query(sql_string, dawnengine)
+
+ r = {}
+ for d, g in df.groupby(pd.Grouper(freq='M')):
+ cusip_list = g.loc[g.index[-1]].identifier
+ if isinstance(cusip_list, str):
+ pos = pd.merge(pd.DataFrame(g.loc[g.index[-1]]).T, cusip_map, on='identifier')
+ else:
+ pos = pd.merge(g.loc[g.index[-1]], cusip_map, on='identifier')
+ cusip_list = pos.cusip.tolist()
+ placeholders = ",".join(["%s"] * (1+len(cusip_list)))
+ sql_string = f"SELECT * FROM historical_cusip_risk({placeholders})"
+ model = pd.read_sql_query(sql_string, etengine, parse_dates = ['pricingdate'],
+ params=[d.date()] + cusip_list)
+ model = pd.concat([model, pd.Series(cusip_list, name='cusip')], axis=1)
+ model = model.dropna().set_index('pricingdate')
+ r[d] = pd.merge(model, pos, on='cusip').set_index('cusip')
+ calc_df = pd.concat(r, names=['date', 'cusip'])
+ calc_df['hy_equiv'] = calc_df.delta * calc_df.endbookmv
+ return calc_df
+