aboutsummaryrefslogtreecommitdiffstats
path: root/python/globeop_reports.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/globeop_reports.py')
-rw-r--r--python/globeop_reports.py117
1 files changed, 6 insertions, 111 deletions
diff --git a/python/globeop_reports.py b/python/globeop_reports.py
index b92eabfa..4562c605 100644
--- a/python/globeop_reports.py
+++ b/python/globeop_reports.py
@@ -18,9 +18,10 @@ def get_monthly_pnl(group_by = ['identifier']):
index_col=['date'])
df_pnl['identifier'] = df_pnl.invid.str.replace("_A$", "")
pnl_cols = ['bookunrealmtm', 'bookrealmtm', 'bookrealincome', 'bookunrealincome', 'totalbookpl']
- monthend_pnl = df_pnl.groupby(pd.Grouper(freq='M')).apply(lambda df: df.loc[df.index[-1]])
+ monthend_pnl = df_pnl.groupby(pd.Grouper(freq='M'), group_keys=False).apply(lambda df: df.loc[df.index[-1]])
return monthend_pnl.groupby(['date'] + group_by)[['mtd' + col for col in pnl_cols]].sum()
+
def get_portfolio(report_date = None):
if report_date is not None:
sql_string = "SELECT * FROM valuation_reports where periodenddate = %s"
@@ -33,6 +34,7 @@ def get_portfolio(report_date = None):
df['identifier'] = df.invid.str.replace("_A$", "")
return df
+
def curr_port_PNL(date = datetime.date.today(), asset_class='Subprime'):
date = (date - off.MonthEnd(1)).date()
sql_string = "SELECT * FROM risk_positions(%s, %s) WHERE notional > 0"
@@ -41,6 +43,7 @@ def curr_port_PNL(date = datetime.date.today(), asset_class='Subprime'):
df_all = df_positions.merge(df_pnl.groupby('identifier').sum().reset_index(), on=['identifier'])
return df_all
+
def trade_performance():
sql_string = "SELECT * FROM bonds"
df_trades = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates={'lastupdate': {'utc': True}, 'trade_date': {}, 'settle_date': {}})
@@ -74,11 +77,9 @@ def trade_performance():
df_all = df_all.sort_values('trade_date', ascending=False)
- table = pd.DataFrame()
- #table['average_days_held'] = df_all.days_held.mean()
-
return df_all
+
def get_net_navs():
sql_string = "SELECT * FROM valuation_reports"
df_val = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates=['periodenddate'])
@@ -91,94 +92,6 @@ def get_net_navs():
df.at[('2013-01-31', 'begbooknav')] = 12500000
return df
-#def alloc(report_date, alloc = 'pnl'):
-def alloc(alloc = 'pnl'):
-
- """ Takes strategy grouping """
- "Alloc: pnl or capital"
-
- if alloc == 'pnl':
- #nav = go.get_net_navs()
- #df = go.get_monthly_pnl(['strat', 'custacctname'])
- nav = get_net_navs()
- df = get_monthly_pnl(['strat', 'custacctname'])
- df = df.join(nav.begbooknav)
- df['strat_return'] = df.mtdtotalbookpl / df.begbooknav
- df = df.reset_index().dropna(subset = ['custacctname'])
- df.set_index(['strat', 'custacctname'], inplace=True)
- df = df.rename(columns={"date": "periodenddate"})
- #df = df.loc[report_date.date()]
- elif alloc == 'capital':
- df = get_portfolio().reset_index()
- df.dropna(subset = ['custacctname'], inplace=True)
- df.set_index(['strat', 'custacctname'], inplace=True)
-
- #get strategy lookup table: group-by a merged DF to spot unmapped strategies
- strats = pd.read_csv('/home/serenitas/edwin/Python/strat_map.csv', index_col=['strat', 'custacctname'])
- #Check for empty sets: df.set_index(['strat','custacctname']).groupby(['strat','custacctname'])
- df = df.merge(strats, left_index=True, right_index=True)
- df = df.fillna(-1)
- return df.groupby(['periodenddate', alloc]).sum()
-
-def pnl_alloc_plot(df):
-
- """ Takes the alloc('pnl') dataframe """
- y = df.strat_return
- x = df.index
- x_loc = np.arange(len(df.index))
-
- width = .35 #width of the bar
- fig, ax = plt.subplots(figsize = (6,6))
- ax.bar(x_loc, y, width)
-
- ax.set_xlabel('Strategy')
- ax.set_xticks(x_loc + width /2)
- ax.set_xticklabels(x, rotation='45')
-
- #set y-axis as percentage
- ax.set_ylabel('Return (%)')
- y_ticks = ax.get_yticks()
- ax.set_yticklabels(['{:.2f}%'.format(y*100) for y in y_ticks])
- plt.tight_layout()
-
-def cap_alloc_plot_pie(df):
-
- """ Takes the alloc('capital') dataframe"""
- # create piechart and add a circle at the center
-
- df['alloc'] = df['endbooknav']/df['endbooknav'].sum()
- fig, ax = plt.subplots(figsize=(8,4))
- ax.pie(df.alloc, labels=df.index, autopct='%1.1f%%',
- pctdistance=1.25, labeldistance=1.5)
- ax.add_artist(plt.Circle((0,0), 0.7, color='white'))
- ax.axis('equal')
- plt.tight_layout()
-
-def avg_turnover():
- #Total Bond Sales Proceeds/Average starting 12 months NAV
- avg_nav = get_net_navs().begbooknav[-12:].mean()
- last_monthend = datetime.date.today() - off.MonthEnd(1)
- sql_string = "SELECT * FROM bonds where buysell = 'False'"
- df = pd.read_sql_query(sql_string, dbengine('dawndb'),
- parse_dates={'lastupdate':'utc=True', 'trade_date':'', 'settle_date':''})
- df = df[(df.trade_date > last_monthend - off.MonthEnd(12))
- & (df.trade_date <= last_monthend)]
- return (df.principal_payment + df.accrued_payment).sum()/avg_nav
-
-def num_bond_by_strat():
- df = get_portfolio()
- df = df[(df.custacctname == 'V0NSCLMAMB') &
- ~(df.invid.isin(['USD', 'CAD', 'EUR'])) & (df.endqty > 0)]
- df = df.groupby(pd.Grouper(freq='M')).apply(lambda df: df.loc[df.index[-1]])
- return df.groupby(['periodenddate', 'port']).identifier.nunique().unstack()
-
-def num_bond_trades():
- sql_string = "SELECT * FROM bonds"
- df = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates=['trade_date'],
- index_col=['trade_date'])
- df = df.groupby([pd.Grouper(freq='M'), 'buysell']).identifier.count().unstack()
- idx = pd.date_range(df.index[0], df.index[-1], freq = 'M')
- return df.reindex(idx, fill_value = 0)
def shift_cash(date, amount, df, strat):
nav = get_net_navs()
@@ -186,23 +99,6 @@ def shift_cash(date, amount, df, strat):
df.loc[date,'Cash'] = df.loc[date, 'Cash'] + amount/nav.loc[date].endbooknav
return df
-def cap_alloc_plot_bar(df):
- #ax = df.plot.bar(stacked=True)
- ax = df[:-1].plot.bar(stacked=True, legend=False, figsize=(10,4))
-
- #Format Y Axis
- vals = ax.get_yticks()
- ax.set_yticklabels(['{:3.0f}%'.format(x*100) for x in vals])
-
- #Format X Axis
- visible = ax.xaxis.get_ticklabels()[::6]
- for label in ax.xaxis.get_ticklabels():
- if label not in visible:
- label.set_visible(False)
- ax.xaxis.set_major_formatter(plt.FixedFormatter(df.index.to_series().dt.strftime("%b %Y")))
- ax.xaxis.set_label_text("")
-
- return ax
def calc_trade_performance_stats():
df = trade_performance().set_index('trade_date')
@@ -222,11 +118,10 @@ def calc_trade_performance_stats():
import pdb; pdb.set_trace()
y = y.date().year
results.loc[y] = df2[df2.days_held.notnull()].mean()[['curr_face','initialinvestment', 'days_held']]
- #results.loc[] = len(df2[df2.winners == x].index)/len(df)
-
df[df.days_held.notnull()]['days_held'].groupby(pd.Grouper(freq='A')).mean()
+
def get_rmbs_pos_df(date = None):
engine = dbengine('dawndb')