aboutsummaryrefslogtreecommitdiffstats
path: root/python/globeop_reports.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/globeop_reports.py')
-rw-r--r--python/globeop_reports.py24
1 files changed, 24 insertions, 0 deletions
diff --git a/python/globeop_reports.py b/python/globeop_reports.py
index 1d798677..3e7eb3df 100644
--- a/python/globeop_reports.py
+++ b/python/globeop_reports.py
@@ -66,3 +66,27 @@ def get_net_navs():
df = pd.read_csv('/home/serenitas/edwin/Python/subscription_fee_data.csv', parse_dates=['date'], index_col =['date'])
df.index = df.index.to_period('M').to_timestamp('M')
return df.join(nav)
+
+def calc_trade_performance_stats():
+ df = trade_performance().set_index('trade_date')
+ df.days_held = df.days_held.dt.days
+ df['winners'] = df.apply(lambda df: True if df.percent_gain > 0 else False, axis = 1)
+ df['curr_face'] = df.principal_payment/(df.price/100)
+
+ index = ['All','2017','2016','2015','2014','2013']
+ results = pd.DataFrame(index = index)
+
+ win_per = len(df[df.winners].index)/len(df)
+ loss_per = 1- win_per
+ temp = {}
+ temp1 = {}
+ for x, df1 in df.groupby('winners'):
+ for y, df2 in df1.groupby(pd.TimeGrouper(freq='A')):
+ import pdb; pdb.set_trace()
+ y = y.date().year
+ results.loc[y] = df2[df2.days_held.notnull()].mean()[['curr_face','initialinvestment', 'days_held']]
+ results.loc[] = len(df2[df2.winners == x].index)/len(df)
+
+
+ df[df.days_held.notnull()]['days_held'].groupby(pd.TimeGrouper(freq='A')).mean()
+