aboutsummaryrefslogtreecommitdiffstats
path: root/python/globeop_reports.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/globeop_reports.py')
-rw-r--r--python/globeop_reports.py52
1 files changed, 49 insertions, 3 deletions
diff --git a/python/globeop_reports.py b/python/globeop_reports.py
index f624971c..b92eabfa 100644
--- a/python/globeop_reports.py
+++ b/python/globeop_reports.py
@@ -1,6 +1,7 @@
from glob import iglob
from db import dbengine
from pandas.tseries.offsets import MonthEnd
+from yieldcurve import YC
import os
import pandas as pd
@@ -10,6 +11,7 @@ import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import pandas.tseries.offsets as off
+
def get_monthly_pnl(group_by = ['identifier']):
sql_string = "SELECT * FROM pnl_reports"
df_pnl = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates=['date'],
@@ -19,8 +21,8 @@ def get_monthly_pnl(group_by = ['identifier']):
monthend_pnl = df_pnl.groupby(pd.Grouper(freq='M')).apply(lambda df: df.loc[df.index[-1]])
return monthend_pnl.groupby(['date'] + group_by)[['mtd' + col for col in pnl_cols]].sum()
-def get_portfolio(report_date = False):
- if report_date != False:
+def get_portfolio(report_date = None):
+ if report_date is not None:
sql_string = "SELECT * FROM valuation_reports where periodenddate = %s"
df = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates=['periodenddate'],
index_col=['periodenddate'], params=[report_date,])
@@ -208,7 +210,7 @@ def calc_trade_performance_stats():
df['winners'] = df.apply(lambda df: True if df.percent_gain > 0 else False, axis = 1)
df['curr_face'] = df.principal_payment/(df.price/100)
- index = ['All','2017','2016','2015','2014','2013']
+ index = ['All', '2017', '2016', '2015', '2014', '2013']
results = pd.DataFrame(index = index)
win_per = len(df[df.winners].index)/len(df)
@@ -225,3 +227,47 @@ def calc_trade_performance_stats():
df[df.days_held.notnull()]['days_held'].groupby(pd.Grouper(freq='A')).mean()
+def get_rmbs_pos_df(date = None):
+
+ engine = dbengine('dawndb')
+ calc_df = pd.DataFrame()
+ end_date = pd.datetime.today() - MonthEnd(1)
+
+ if date is not None:
+ date = date + MonthEnd(0)
+ df = get_portfolio(date)
+ df = df.sort_index().loc[:end_date]
+ mask = (df.port == 'MORTGAGES') & (df.endbookmv > 0) & (df['invid'].str.len() == 9)
+ df = df[mask]
+ sql_string = "SELECT distinct timestamp FROM priced"
+ timestamps = pd.read_sql_query(sql_string, engine)
+
+ for d, g in df.groupby(pd.Grouper(freq='M')):
+ model_date = pd.to_datetime(timestamps[timestamps.timestamp <= d+off.DateOffset(days=1)].max()[0]).date()
+ yc = YC(evaluation_date=model_date)
+ libor = float(yc.zero_rate(.125))
+ if d > pd.datetime(2017, 9, 30):
+ model_id_sql_string = "SELECT * FROM latest_sim(%s)"
+ model_id = pd.read_sql_query(model_id_sql_string, engine, params=[model_date])
+ model_id = model_id.loc[0][0]
+ #special case
+ if model_date == pd.datetime(2017, 10, 27).date():
+ model_id = 4
+ sql_string = "SELECT * FROM priced where date(timestamp) = %s and model_id_sub = %s"
+ model = pd.read_sql_query(sql_string, engine, params=[model_date, model_id])
+ else:
+ sql_string = "SELECT * FROM priced where date(timestamp) = %s"
+ model = pd.read_sql_query(sql_string, engine, params=[model_date])
+ model['timestamp'] = model['timestamp'].dt.date
+ model = model[model.normalization == 'current_notional']
+ model = model.set_index(['cusip', 'model_version']).unstack(1)
+ temp = pd.merge(g.loc[d], model, left_on='identifier', right_index=True)
+ temp['curr_ntl'] = temp.endbooknav/temp.endlocalmarketprice *100
+ temp['b_yield'] = np.minimum((temp[('pv', 1)]/temp.endlocalmarketprice*100) ** (1/temp[('moddur', 1)]) - 1, 10)
+ temp = temp.dropna(subset=['b_yield'])
+ temp['b_yield'] = temp.apply(lambda df: df['b_yield'] + float(yc.zero_rate(df[('moddur', 3)])) - libor, axis=1)
+ temp = temp[(temp[('pv', 3)] != 0)]
+ temp['percent_model'] = temp.apply(lambda df: df.endlocalmarketprice/100/df[('pv', 3)], axis=1)
+ calc_df = calc_df.append(temp)
+
+ return calc_df