aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/Dispersion.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks/Dispersion.ipynb')
-rw-r--r--python/notebooks/Dispersion.ipynb39
1 files changed, 15 insertions, 24 deletions
diff --git a/python/notebooks/Dispersion.ipynb b/python/notebooks/Dispersion.ipynb
index 0c3b518f..1b722f50 100644
--- a/python/notebooks/Dispersion.ipynb
+++ b/python/notebooks/Dispersion.ipynb
@@ -42,9 +42,11 @@
"#end = (start + pd.offsets.BDay(1) * 365).date()\n",
"end = datetime.datetime.today()\n",
"index_type = 'IG'\n",
- "risk = disp.get_tranche_data(dbconn(\"serenitasdb\"), index_type)\n",
+ "serenitasconn = dbconn(\"serenitasdb\")\n",
+ "serenitasconn.autocommit = True\n",
+ "risk = disp.get_tranche_data(serenitasconn, index_type)\n",
"train_data = risk[start: end]\n",
- "gini_calc, gini_model = disp.create_models(dbconn(\"serenitasdb\"), train_data)\n",
+ "gini_calc, gini_model = disp.create_models(serenitasconn, train_data)\n",
"gini_model.fit().summary()"
]
},
@@ -321,15 +323,17 @@
"metadata": {},
"outputs": [],
"source": [
- "#Old Model\n",
"value_date = (datetime.datetime.today() - pd.offsets.BDay(1)).date()\n",
"start = (datetime.datetime.today() - pd.offsets.BDay(1) * 365 *4).date()\n",
"#end = (start + pd.offsets.BDay(1) * 365).date()\n",
"end = datetime.datetime.today()\n",
"gini_model, gini_results = {}, {}\n",
+ "conn = dbconn(\"serenitasdb\")\n",
+ "conn.autocommit = True\n",
"for index_type in ['HY', 'IG', 'EU', 'XO']:\n",
" risk = disp.get_tranche_data(dbconn(\"serenitasdb\"), index_type)\n",
- " gini_model[index_type], gini_results[index_type] = disp.create_models_separate(risk)"
+ " #gini_results[index_type], gini_model[index_type] = disp.create_separate_models(risk)\n",
+ " gini_results[index_type], gini_model[index_type] = disp.create_models_v2(conn, risk)"
]
},
{
@@ -338,7 +342,8 @@
"metadata": {},
"outputs": [],
"source": [
- "gini_model['HY'][0].summary()"
+ "#gini_model['HY'][0].summary()\n",
+ "gini_model['HY'].fit().summary()"
]
},
{
@@ -356,17 +361,9 @@
"metadata": {},
"outputs": [],
"source": [
- "gini_results.to_csv('/home/serenitas/edwin/results.csv', header=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
+ "fieldlist = ['exp_percentage','dispersion','gini','tranche_loss_per','mispricing']\n",
"for index_type in ['HY', 'IG', 'EU', 'XO']:\n",
- " gini_results[index_type].to_csv('/home/serenitas/edwin/' + index_type + '_results.csv')"
+ " gini_results[index_type][fieldlist].to_csv('/home/serenitas/edwin/' + index_type + '_results.csv')"
]
},
{
@@ -374,27 +371,21 @@
"execution_count": null,
"metadata": {},
"outputs": [],
- "source": [
- "to_plot = gini_results.xs(0, level='attach')['mispricing']"
- ]
+ "source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
- "source": [
- "to_plot.groupby(['date', 'index','tenor']).nth(-1).plot()"
- ]
+ "source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
- "source": [
- "gini_results.xs(31, level='series')"
- ]
+ "source": []
},
{
"cell_type": "code",