aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/Interest Statement.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks/Interest Statement.ipynb')
-rw-r--r--python/notebooks/Interest Statement.ipynb158
1 files changed, 147 insertions, 11 deletions
diff --git a/python/notebooks/Interest Statement.ipynb b/python/notebooks/Interest Statement.ipynb
index cf0c64bd..69518dff 100644
--- a/python/notebooks/Interest Statement.ipynb
+++ b/python/notebooks/Interest Statement.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
@@ -23,7 +23,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
@@ -60,9 +60,24 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 24,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "a0d5bf2d610b480f918704e73e02309a",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "VBox(children=(HBox(children=(Dropdown(description='Broker:', index=3, options=('BAML_FCM', 'BAML_ISDA', 'BNP'…"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
"from ipywidgets import widgets, Layout\n",
"import datetime\n",
@@ -75,12 +90,12 @@
"start_date = widgets.DatePicker(\n",
" description='start:',\n",
" disabled=False,\n",
- " value=datetime.date(2019, 9, 1)\n",
+ " value=datetime.date(2019, 12, 1)\n",
")\n",
"end_date = widgets.DatePicker(\n",
" description='end:',\n",
" disabled=False,\n",
- " value=datetime.date(2019, 9, 30)\n",
+ " value=datetime.date(2019, 12, 31)\n",
")\n",
"output = widgets.interactive_output(f_print, {'broker': broker_widget, 'start_date': start_date, 'end_date': end_date})\n",
"output.layout= Layout(margin='auto auto auto 90px')\n",
@@ -93,18 +108,139 @@
"metadata": {},
"outputs": [],
"source": [
- "df_balances[df_balances.broker=='BAML_ISDA'].loc[\"2019-06-10\"]"
+ "df_balances[df_balances.broker=='GS'].loc[\"2019-06-10\"]"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "date\n",
+ "2019-12-02 -8,800,000.00\n",
+ "2019-12-03 -8,800,000.00\n",
+ "2019-12-04 -8,800,000.00\n",
+ "2019-12-05 -8,800,000.00\n",
+ "2019-12-06 -8,800,000.00\n",
+ "2019-12-09 -8,800,000.00\n",
+ "2019-12-10 -8,800,000.00\n",
+ "2019-12-11 -9,070,000.00\n",
+ "2019-12-12 -9,070,000.00\n",
+ "2019-12-13 -9,070,000.00\n",
+ "2019-12-16 -9,070,000.00\n",
+ "2019-12-17 -9,070,000.00\n",
+ "2019-12-18 -9,070,000.00\n",
+ "2019-12-19 -9,070,000.00\n",
+ "2019-12-20 -9,070,000.00\n",
+ "2019-12-23 -9,070,000.00\n",
+ "2019-12-26 -9,070,000.00\n",
+ "2019-12-27 -9,070,000.00\n",
+ "2019-12-30 -9,070,000.00\n",
+ "2020-01-01 -9,070,000.00\n",
+ "2020-01-02 -9,070,000.00\n",
+ "2020-01-03 -9,070,000.00\n",
+ "Name: amount, dtype: float64"
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_gs=df_balances[df_balances.broker == \"MS\"]\n",
+ "df_gs.groupby(df_gs.index)['amount'].sum()[\"2019-12-01\":]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
- "df_baml=df_balances[df_balances.broker == \"BAML_ISDA\"]\n",
- "df_baml.groupby(df_baml.index)['amount'].sum()[\"2019-08-30\":]"
+ "def f(df_balances, df_rates, broker, start_date, end_date):\n",
+ " df = (df_balances[df_balances.broker == broker].\n",
+ " set_index(\"strategy\", append=True)[\"amount\"].\n",
+ " unstack(\"strategy\"))\n",
+ " df[df.isnull()] = 0.\n",
+ " drange = pd.date_range(pd.Timestamp(start_date) - BDay(), end_date)\n",
+ " rates = df_rates.reindex(drange, method=\"ffill\") /100 /360\n",
+ " df = df.reindex(drange, method=\"ffill\")\n",
+ " if broker in [\"BAML_ISDA\", \"CITI\"]:\n",
+ " d = {}\n",
+ " for strat in df:\n",
+ " s = df.loc[start_date:, strat]\n",
+ " ir_bal = 0.\n",
+ " for bal, r in zip(s.values, rates.loc[start_date:, 'rate'].values):\n",
+ " bal += ir_bal\n",
+ " ir_bal += bal * r\n",
+ " d[strat] = ir_bal\n",
+ " result = pd.Series(d, name='amount')\n",
+ " else:\n",
+ " result = df.loc[start_date:] * rates.loc[start_date:].values\n",
+ " return result"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2019-12-01 -1,217.99\n",
+ "2019-12-02 -1,217.99\n",
+ "2019-12-03 -1,210.18\n",
+ "2019-12-04 -1,210.18\n",
+ "2019-12-05 -1,210.18\n",
+ "2019-12-06 -1,440.10\n",
+ "2019-12-07 -1,440.10\n",
+ "2019-12-08 -1,440.10\n",
+ "2019-12-09 -1,440.10\n",
+ "2019-12-10 -1,440.10\n",
+ "2019-12-11 -1,440.10\n",
+ "2019-12-12 -1,474.54\n",
+ "2019-12-13 -1,474.54\n",
+ "2019-12-14 -1,474.54\n",
+ "2019-12-15 -1,474.54\n",
+ "2019-12-16 -1,484.06\n",
+ "2019-12-17 -1,484.06\n",
+ "2019-12-18 -1,474.54\n",
+ "2019-12-19 -1,474.54\n",
+ "2019-12-20 -1,474.54\n",
+ "2019-12-21 -1,474.54\n",
+ "2019-12-22 -1,474.54\n",
+ "2019-12-23 -1,474.54\n",
+ "2019-12-24 -1,474.54\n",
+ "2019-12-25 -1,474.54\n",
+ "2019-12-26 -1,474.54\n",
+ "2019-12-27 -1,474.54\n",
+ "2019-12-28 -1,474.54\n",
+ "2019-12-29 -1,474.54\n",
+ "2019-12-30 -1,474.54\n",
+ "2019-12-31 -1,474.54\n",
+ "Freq: D, dtype: float64"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "f(df_balances, df_rates, \"GS\", \"2019-12-01\", \"2019-12-31\").sum(axis=1)"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {
@@ -123,7 +259,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.4"
+ "version": "3.8.1"
}
},
"nbformat": 4,