aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/PnL.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks/PnL.ipynb')
-rw-r--r--python/notebooks/PnL.ipynb139
1 files changed, 139 insertions, 0 deletions
diff --git a/python/notebooks/PnL.ipynb b/python/notebooks/PnL.ipynb
new file mode 100644
index 00000000..89ac2487
--- /dev/null
+++ b/python/notebooks/PnL.ipynb
@@ -0,0 +1,139 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1d37c1d7-e332-4cb3-b228-0045c547ab93",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pnl_explain as pl\n",
+ "import datetime\n",
+ "from itertools import chain\n",
+ "from serenitas.utils.db import dbconn\n",
+ "\n",
+ "dawndb = dbconn(\"dawndb\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f600c71b-59a9-4f10-beac-37718f6e4016",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "today = datetime.date.today()\n",
+ "start_date = datetime.date(2022,7,1)\n",
+ "end_date = datetime.date(2022,11,1)\n",
+ "strats = {\n",
+ " \"swaption\": (\"IGOPTDEL\", \"HYOPTDEL\"),\n",
+ " \"macro_hedge\": (\"HEDGE_MAC\",),\n",
+ " \"tranche\": (\"IGINX\", \"HYINX\", \"XOINX\", \"EUINX\"),\n",
+ " \"curve\": (\"SER_ITRXCURVE\", \"SER_IGCURVE\", \"SER_HYCURVE\"),\n",
+ " \"rmbs_hedge\":(\"HEDGE_MBS\",),\n",
+ " \"clo_hedge\": (\"HEDGE_CLO\",),\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "79fdf8bb-79a9-48e5-b97e-ad5d862078fd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for fund in ['SERCGMAST', 'ISOSEL', 'BOWDST']:\n",
+ " pnl = {}\n",
+ " #bond PNL---------------\n",
+ " for ac in ['CRT', 'Subprime', 'CLO']:\n",
+ " df_instrument = pl.get_pv(conn=dawndb, \n",
+ " fund=fund, \n",
+ " pnl_type = 'bond', \n",
+ " asset_class = ac, \n",
+ " start_date = start_date, \n",
+ " end_date = end_date)\n",
+ " if not df_instrument.empty:\n",
+ " pnl[ac] = pl.get_pnl(df_instrument, 'bond')\n",
+ " #Tranches---------------\n",
+ " ac = 'tranche'\n",
+ " pv2=True\n",
+ " df_instrument = pl.get_pv(conn=dawndb, \n",
+ " fund=fund, \n",
+ " pnl_type = ac, \n",
+ " start_date = start_date, \n",
+ " end_date = end_date,\n",
+ " pv2=pv2)\n",
+ " pnl[ac] = pl.get_pnl(df_instrument, ac, pv2=pv2)\n",
+ " #swaptions--------------\n",
+ " ac = 'swaption'\n",
+ " df_instrument = pl.get_pv(conn=dawndb, \n",
+ " fund=fund, \n",
+ " pnl_type = ac, \n",
+ " start_date = start_date, \n",
+ " end_date = end_date, \n",
+ " source_list=['CITI', 'JPM'])\n",
+ " pnl[ac] = pl.get_pnl(df_instrument, ac)\n",
+ " #All the cleared indices--------\n",
+ " for ac in ['macro_hedge', 'curve', 'tranche', 'swaption', 'rmbs_hedge', 'clo_hedge']: \n",
+ " df_index = pl.get_index_pv(\n",
+ " start_date, end_date, fund, dawndb, strats[ac]\n",
+ " )\n",
+ " pnl[ac+'_index'] = df_index.pv.diff() + df_index[[\"upfront\", \"accrued\"]].sum(axis=1)\n",
+ " #FX PV-------------\n",
+ " ac = 'fx_forward'\n",
+ " df_instrument = pl.get_fx_pv(start_date = start_date,\n",
+ " end_date = end_date,\n",
+ " fund=fund)\n",
+ " pnl_inst = pl.get_pnl(df_instrument, ac)\n",
+ " pnl_inst.index = pd.to_datetime(pnl_inst.index)\n",
+ " pnl[ac] = pnl_inst\n",
+ " pnl_all = pd.concat(pnl, axis=1).fillna(0)\n",
+ " filename = '/home/serenitas/Daily/' + today.strftime(\"%Y-%m-%d\")+ \"/\" + fund + '_pnl.csv'\n",
+ " pnl_all.to_csv(filename)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e179cc99-edb1-48b9-b50e-7a5ae25c1e86",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#check if first day of NAV and if the upfront payment line up. if not, PNL will not work\n",
+ "#check trade date vs. that NULL NAV/upfront date. If it is termination it is okay\n",
+ "ac= 'tranche'\n",
+ "df_instrument = pl.get_pv(conn=dawndb, \n",
+ " fund=fund, \n",
+ " pnl_type = ac, \n",
+ " start_date = start_date, \n",
+ " end_date = end_date,\n",
+ " pv2=pv2)\n",
+ "check_trades = df_instrument.loc[df_instrument['clean_nav'].isna() &\n",
+ " df_instrument['principal'].notna()]\n",
+ "cds_trades = pd.read_sql_query(\"SELECT id, trade_date from cds\", dawndb,parse_dates=[\"trade_date\"], index_col=['id'])\n",
+ "check_trades = pd.merge(check_trades, cds_trades, left_index=True, right_index=True)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}