aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/Reto Report.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks/Reto Report.ipynb')
-rw-r--r--python/notebooks/Reto Report.ipynb78
1 files changed, 38 insertions, 40 deletions
diff --git a/python/notebooks/Reto Report.ipynb b/python/notebooks/Reto Report.ipynb
index 8440088c..f266cd63 100644
--- a/python/notebooks/Reto Report.ipynb
+++ b/python/notebooks/Reto Report.ipynb
@@ -20,6 +20,7 @@
"from utils.db import dbconn, dbengine\n",
"\n",
"from risk.tranches import get_tranche_portfolio\n",
+ "from risk.swaptions import get_swaption_portfolio\n",
"from risk.bonds import subprime_risk, clo_risk, crt_risk\n",
"\n",
"dawn_engine = dbengine('dawndb')"
@@ -151,6 +152,31 @@
"metadata": {},
"outputs": [],
"source": [
+ "################################## Calculate Historical Bond Duration/Yield\n",
+ "mysql_engine = dbengine('rmbs_model')\n",
+ "end_date = pd.datetime.today() - MonthEnd(1)\n",
+ "dates = pd.date_range(datetime.date(2013, 1, 30), end_date, freq=\"M\")\n",
+ "calc_df = pd.DataFrame()\n",
+ "sql_string = (\"SELECT distinct timestamp::date FROM priced where normalization = 'current_notional' and model_version = 1 \"\n",
+ " \"and date(timestamp) < %s and date(timestamp) > %s order by timestamp desc\")\n",
+ "with dbconn('etdb') as etconn, dbconn('dawndb') as dawnconn:\n",
+ " for d in dates:\n",
+ " timestamps = pd.read_sql_query(sql_string, dawn_engine, parse_dates=[\"timestamp\"], params=[d, d - pd.tseries.offsets.DateOffset(15, \"D\")])\n",
+ " calc_df = calc_df.append(subprime_risk(d.date(), dawnconn, mysql_engine, timestamps.iloc[0,0].date()))\n",
+ "calc_df=calc_df.reset_index().set_index('date')\n",
+ "calc_df = calc_df.dropna(subset=['bond_yield', 'hy_equiv']) \n",
+ "bond_stats = pd.DataFrame()\n",
+ "for d, g in calc_df.groupby(pd.Grouper(freq='M')):\n",
+ " bond_stats.loc[d, 'dur'] = sum(g.notional * g.factor * g.modDur)/sum(g.notional * g.factor)\n",
+ " bond_stats.loc[d, 'yield'] = sum(g.usd_market_value * g.modDur * g.bond_yield) /sum(g.usd_market_value * g.modDur)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
"################################### Calculate stress scenario \n",
"position_date = (datetime.date.today() - BDay(1)).date()\n",
"shock_date = (datetime.date.today() - BDay(1)).date()\n",
@@ -188,41 +214,33 @@
"source": [
"#tranche positions\n",
"conn = dawn_engine.raw_connection()\n",
- "portf = get_tranche_portfolio(position_date, conn, False, 'SERCGMAST')\n",
- "\n",
- "#swaption positions\n",
- "swaption_sql_string = (\"select id, folder, expiration_date from swaptions where expiration_date > %s \"\n",
- " \"AND swap_type = 'CD_INDEX_OPTION' \"\n",
- " \"AND trade_date <= %s AND termination_date IS NULL\")\n",
+ "mysql_engine = dbengine('rmbs_model')\n",
+ "mysqlcrt_engine = dbengine('crt')\n",
"\n",
- "with conn.cursor() as c:\n",
- " c.execute(swaption_sql_string, (position_date, position_date))\n",
- " for trade_id, strat, expiration_date in c:\n",
- " if expiration_date > shock_date:\n",
- " portf.add_trade(BlackSwaption.from_tradeid(trade_id), (strat, trade_id))\n",
- "conn.close()\n",
+ "portf = get_tranche_portfolio(position_date, conn, False, 'SERCGMAST')\n",
+ "s_portf = get_swaption_portfolio(position_date, conn)\n",
+ "for t, id in zip(s_portf.trades, s_portf.trade_ids):\n",
+ " portf.add_trade(t, id)\n",
"\n",
"#index positions\n",
"df = pd.read_sql_query(\"SELECT * from list_cds_positions_by_strat(%s)\",\n",
" dawn_engine, params=(position_date,))\n",
- "df_curve = df[df.folder.str.contains(\"CURVE\")]\n",
"df_no_curve = df[~df.folder.str.contains(\"CURVE\")]\n",
"for t in df_no_curve.itertuples(index=False):\n",
" portf.add_trade(CreditIndex(redcode=t.security_id, maturity=t.maturity, notional=t.notional),\n",
" (t.folder, t.security_desc))\n",
" \n",
"#separately add in curve delta\n",
+ "df_curve = df[df.folder.str.contains(\"CURVE\")]\n",
"curve_portf = Portfolio([CreditIndex(redcode=t.security_id, maturity=t.maturity, notional=t.notional)\n",
" for t in df_curve.itertuples(index=False)])\n",
"curve_portf.value_date = spread_date\n",
"curve_portf.mark()\n",
+ "\n",
"portf.add_trade(CreditIndex('HY', on_the_run('HY', spread_date), '5yr', \n",
" value_date=spread_date, \n",
" notional=curve_portf.hy_equiv), ('curve_trades', ''))\n",
"\n",
- "mysql_engine = dbengine('rmbs_model')\n",
- "mysqlcrt_engine = dbengine('crt')\n",
- "\n",
"#get bond risks:\n",
"with dbconn('etdb') as etconn, dbconn('dawndb') as dawnconn:\n",
" rmbs_pos = subprime_risk(position_date, dawnconn, mysql_engine)\n",
@@ -269,7 +287,7 @@
"outputs": [],
"source": [
"################################### Run set of scenario\n",
- "spread_shock = np.round(np.arange(-.2, 1, .1), 3)\n",
+ "spread_shock = np.round(np.arange(-.2, 1, .05), 3)\n",
"scens = run_portfolio_scenarios(portf, date_range, params=['pnl', 'delta'],\n",
" spread_shock=spread_shock,\n",
" vol_shock=vol_shock,\n",
@@ -291,29 +309,9 @@
"\n",
"synthetic = scenarios[['options', 'tranches', 'curve_trades']]\n",
"synthetic['total'] = synthetic.sum(axis = 1)\n",
- "synthetic.plot()"
+ "nav = go.get_net_navs()\n",
+ "(synthetic/nav.endbooknav[-1]).plot()"
]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
}
],
"metadata": {
@@ -336,5 +334,5 @@
}
},
"nbformat": 4,
- "nbformat_minor": 2
+ "nbformat_minor": 4
}