aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/bespokes/zero_recovery_EUXO.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks/bespokes/zero_recovery_EUXO.ipynb')
-rw-r--r--python/notebooks/bespokes/zero_recovery_EUXO.ipynb154
1 files changed, 154 insertions, 0 deletions
diff --git a/python/notebooks/bespokes/zero_recovery_EUXO.ipynb b/python/notebooks/bespokes/zero_recovery_EUXO.ipynb
new file mode 100644
index 00000000..3b3204f1
--- /dev/null
+++ b/python/notebooks/bespokes/zero_recovery_EUXO.ipynb
@@ -0,0 +1,154 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from analytics.tranche_basket import DualCorrTranche, TrancheBasket\n",
+ "from pandas.tseries.offsets import BDay\n",
+ "\n",
+ "import scipy.interpolate as intp\n",
+ "import numpy as np\n",
+ "import datetime"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "index = 'EU'\n",
+ "series = 30\n",
+ "value_date=datetime.date.today() - BDay(1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "idx = TrancheBasket(index, series, \"5yr\", value_date=value_date)\n",
+ "idx.tweak()\n",
+ "idx.build_skew()\n",
+ "a,b, bond_prices =idx.tranche_pvs()\n",
+ "bond_prices"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "idx.tranche_spreads()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "a,b, bond_prices = idx.tranche_pvs(zero_recovery=True)\n",
+ "bond_prices"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "idx.tranche_spreads(zero_recovery=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#map rho to the new expected loss\n",
+ "idx_zero_loss = idx.expected_loss()/(1-idx.recovery_rates.mean())\n",
+ "exp_loss = np.zeros(1)\n",
+ "for k in idx.K[1:]:\n",
+ " exp_loss = np.append(exp_loss, idx.expected_loss_trunc(k))\n",
+ "moneyness = np.divide(idx.K, exp_loss)\n",
+ "zero_moneyness = np.divide(idx.K, exp_loss/(1-idx.recovery_rates.mean()))\n",
+ "extrapolate = intp.interp1d(moneyness[1:4], idx.rho[1:4], fill_value='extrapolate')\n",
+ "idx.rho[1:4] = extrapolate(zero_moneyness[1:4])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "a,b, bond_prices = idx.tranche_pvs(zero_recovery=True)\n",
+ "bond_prices"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "idx.tranche_spreads(zero_recovery=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#top down - to price SS\n",
+ "idx.build_skew(skew_type='topdown')\n",
+ "extrapolate = intp.interp1d(moneyness[1:4], idx.rho[1:4], fill_value='extrapolate')\n",
+ "idx.rho[1:4] = extrapolate(zero_moneyness[1:4])\n",
+ "idx.tranche_spreads(zero_recovery=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}