aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/swaption_scenarios.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks/swaption_scenarios.ipynb')
-rw-r--r--python/notebooks/swaption_scenarios.ipynb432
1 files changed, 432 insertions, 0 deletions
diff --git a/python/notebooks/swaption_scenarios.ipynb b/python/notebooks/swaption_scenarios.ipynb
new file mode 100644
index 00000000..13639918
--- /dev/null
+++ b/python/notebooks/swaption_scenarios.ipynb
@@ -0,0 +1,432 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import datetime\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import analytics\n",
+ "import math\n",
+ "\n",
+ "from graphics import plot_color_map\n",
+ "from analytics import Swaption, BlackSwaption, BlackSwaptionVolSurface, CreditIndex, Portfolio\n",
+ "from analytics.scenarios import run_swaption_scenarios, run_index_scenarios, run_portfolio_scenarios, run_portfolio_scenarios_module\n",
+ "from scipy.interpolate import SmoothBivariateSpline\n",
+ "from utils.db import dbconn, dbengine\n",
+ "from risk.swaptions import get_swaption_portfolio\n",
+ "\n",
+ "conn = dbconn('dawndb')\n",
+ "dawn_engine = dbengine('dawndb')\n",
+ "conn.autocommit=True\n",
+ "analytics.init_ontr()\n",
+ "pd.options.display.float_format = \"{:,.2f}\".format"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "portf = get_swaption_portfolio(datetime.date.today() - pd.offsets.BDay(), conn, source_list=['GS'])\n",
+ "\n",
+ "hedges = pd.read_sql_query(\"SELECT security_desc, notional FROM list_cds_positions_by_strat(%s) \"\n",
+ " \"WHERE folder in ('IGOPTDEL', 'HYOPTDEL')\",\n",
+ " conn, params=(datetime.date.today(),))\n",
+ "\n",
+ "for i, r in hedges.iterrows():\n",
+ " portf.add_trade(CreditIndex(r['security_desc'].split(\" \")[1],\n",
+ " r['security_desc'].split(\" \")[3][1:],\n",
+ " '5yr', value_date=datetime.date.today() - pd.offsets.BDay(),\n",
+ " notional = r['notional']), ('delta', i))\n",
+ "\n",
+ "vol_surface = {}\n",
+ "for trade in portf.swaptions:\n",
+ " vs = BlackSwaptionVolSurface(trade.index.index_type, trade.index.series, \n",
+ " value_date=datetime.date.today(), interp_method = \"bivariate_linear\")\n",
+ " vol_surface[(trade.index.index_type, trade.index.series, trade.option_type)] = vs[vs.list(source='GS', option_type=trade.option_type)[-1]]\n",
+ "\n",
+ "#Set original_pv as of yesterday's EOD levels, don't reset PV after this time\n",
+ "portf.mark(interp_method=\"bivariate_linear\", source_list=['GS'])\n",
+ "portf.reset_pv()\n",
+ "\n",
+ "#set ref to today's levels\n",
+ "portf.value_date = datetime.date.today()\n",
+ "portf.mark(interp_method=\"bivariate_linear\", source_list=['GS'])\n",
+ "\n",
+ "spread_shock = np.round(np.arange(-.1, .1, .01), 4)\n",
+ "scens = run_portfolio_scenarios(portf, [datetime.datetime.now()], params=['pnl', 'hy_equiv', 'sigma'],\n",
+ " spread_shock=spread_shock,\n",
+ " vol_shock=[0],\n",
+ " corr_shock=[0],\n",
+ " vol_surface=vol_surface)\n",
+ "pnl = scens.xs('pnl', level = 2, axis=1).sum(axis=1)\n",
+ "hy_equiv = scens.xs('hy_equiv', level = 2, axis=1).sum(axis=1)\n",
+ "\n",
+ "ig = CreditIndex('IG', 32, '5yr')\n",
+ "ig.mark()\n",
+ "\n",
+ "pnl.index = pnl.index.set_levels((1+pnl.index.get_level_values('spread_shock')) * ig.spread, level = 'spread_shock')\n",
+ "hy_equiv.index = pnl.index"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "pnl, hy_equiv"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Trade Analysis - pre-trade analytics\n",
+ "index = 'IG'\n",
+ "series = 32\n",
+ "option_delta = CreditIndex(index, series, '5yr') \n",
+ "option_delta.spread = 60\n",
+ "option1 = BlackSwaption(option_delta, datetime.date(2019, 9, 17), 90, option_type=\"payer\") \n",
+ "option2 = BlackSwaption(option_delta, datetime.date(2019, 11, 19), 90, option_type=\"payer\") \n",
+ "option1.sigma = .6\n",
+ "option2.sigma = .58\n",
+ "option1.notional = 100_000_000 \n",
+ "option2.notional = 100_000_000 \n",
+ "option1.direction = 'Long' \n",
+ "option2.direction = 'Short' \n",
+ "option_delta.notional = option1.delta * option1.notional + option2.delta * option2.notional\n",
+ "portf = Portfolio([option1, option2, option_delta], trade_ids=['opt1', 'opt2', 'delta'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "date_range = pd.bdate_range(portf.value_date, portf.value_date + pd.tseries.offsets.BDay(30), freq='3B')\n",
+ "vol_shock = np.arange(-.15, .31, 0.01)\n",
+ "spread_shock = np.arange(-.2, 2, 0.01)\n",
+ "vol_surface = {}\n",
+ "for trade in portf.swaptions:\n",
+ " vs = BlackSwaptionVolSurface(trade.index.index_type, trade.index.series, \n",
+ " value_date=portf.value_date, interp_method = \"bivariate_linear\")\n",
+ " vol_surface[(trade.index.index_type, trade.index.series)] = vs[vs.list(option_type='payer')[-1]]\n",
+ "\n",
+ "df = run_portfolio_scenarios(portf, date_range, params=[\"pnl\"],\n",
+ " spread_shock = spread_shock,\n",
+ " vol_shock = vol_shock,\n",
+ " vol_surface = vol_surface)\n",
+ "df = df.reset_index()\n",
+ "df.vol_shock = df.vol_shock.round(2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def plot_trade_scenarios(portf, shock_min=-.15, shock_max=.2, vol_time_roll=True):\n",
+ " portf.reset_pv()\n",
+ " end_date = min(portf.swaptions, key=lambda x: x.exercise_date).exercise_date\n",
+ " date_range = pd.bdate_range(portf.value_date,\n",
+ " end_date - pd.tseries.offsets.BDay(), freq='3B')\n",
+ " vol_shock = np.arange(-.15, .31, 0.01)\n",
+ " spread_shock = np.arange(shock_min, shock_max, 0.01)\n",
+ " index = portf.indices[0].index_type\n",
+ " vol_surface = {}\n",
+ " for trade in portf.swaptions:\n",
+ " vs = BlackSwaptionVolSurface(trade.index.index_type, trade.index.series, \n",
+ " value_date=portf.value_date, interp_method = \"bivariate_linear\")\n",
+ " vol_surface[(trade.index.index_type, trade.index.series)] = vs[vs.list(option_type='payer')[-1]]\n",
+ " \n",
+ " df = run_portfolio_scenarios(portf, date_range, params=[\"pnl\",\"delta\"],\n",
+ " spread_shock = spread_shock,\n",
+ " vol_shock = vol_shock,\n",
+ " vol_surface = vol_surface)\n",
+ " df = df.reset_index()\n",
+ " df.vol_shock = df.vol_shock.round(2)\n",
+ "\n",
+ " if index == 'HY':\n",
+ " df['price'] = 100 + (500 - portf.indices[0].spread * (1 + df.spread_shock)) \\\n",
+ " * abs(portf.indices[0].DV01) / portf.indices[0].notional * 100\n",
+ " df = df.set_index(['date', 'price', 'vol_shock'])\n",
+ " sort_order = [True, False]\n",
+ " else:\n",
+ " df['spread'] = portf.indices[0].spread * (1 + df.spread_shock)\n",
+ " df = df.set_index(['date', 'spread', 'vol_shock'])\n",
+ " sort_order = [True, True]\n",
+ " \n",
+ " pnl = df.xs('pnl', axis=1, level=1).sum(axis=1)\n",
+ " for trade_id, t in portf.items():\n",
+ " if isinstance(t, BlackSwaption):\n",
+ " df[(trade_id, 'delta')] *= -t.notional \n",
+ " delta = df.xs('delta', axis=1, level=1).sum(axis=1).xs(0, level='vol_shock')\n",
+ " delta += sum([x.notional * -1 if x.direction == 'Buyer' else 1 for x in portf.indices])\n",
+ "\n",
+ " pnl.name = 'pnl'\n",
+ " delta.name = 'delta'\n",
+ "\n",
+ " plot_color_map(pnl.xs(0, level='vol_shock'), sort_order)\n",
+ " plot_color_map(delta, sort_order)\n",
+ " plot_color_map(pnl.loc[date_range[-1]], sort_order)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def calc_simple_scenario(portf, shock_min=-.15, shock_max=.2):\n",
+ " portf.reset_pv()\n",
+ " end_date = min(portf.swaptions, key=lambda x: x.exercise_date).exercise_date\n",
+ " date_range = pd.bdate_range(portf.value_date,\n",
+ " end_date - pd.tseries.offsets.BDay(), freq='3B')\n",
+ " vol_shock = [0]\n",
+ " spread_shock = np.arange(shock_min, shock_max, 0.01)\n",
+ " index = portf.indices[0].index_type\n",
+ " vol_surface = {}\n",
+ " for trade in portf.swaptions:\n",
+ " vs = BlackSwaptionVolSurface(trade.index.index_type, trade.index.series, \n",
+ " value_date=portf.value_date, interp_method = \"bivariate_linear\")\n",
+ " vol_surface[(trade.index.index_type, trade.index.series)] = vs[vs.list(option_type='payer')[-1]]\n",
+ "\n",
+ " df = run_portfolio_scenarios(portf, date_range, params=[\"pnl\"],\n",
+ " spread_shock = spread_shock,\n",
+ " vol_shock = vol_shock,\n",
+ " vol_surface = vol_surface)\n",
+ "\n",
+ " return df.xs('pnl', axis=1, level=1).sum(axis=1) "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plot_trade_scenarios(portf)\n",
+ "plot_trade_scenarios(portf, -.15, .5, vol_time_roll=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Dec Jan 2017 Trade\n",
+ "option_delta = CreditIndex.from_tradeid(864)\n",
+ "option1 = BlackSwaption.from_tradeid(3, option_delta)\n",
+ "option2 = BlackSwaption.from_tradeid(4, option_delta)\n",
+ "portf = Portfolio([option1, option2, option_delta], trade_ids=['opt1', 'opt2', 'delta'])\n",
+ "#plot_trade_scenarios(portf)\n",
+ "\n",
+ "#Feb 2017: Sell May Buy April Calendar Trade\n",
+ "option_delta = CreditIndex.from_tradeid(870)\n",
+ "option1 = BlackSwaption.from_tradeid(5, option_delta)\n",
+ "option2 = BlackSwaption.from_tradeid(6, option_delta)\n",
+ "portf = Portfolio([option1, option2, option_delta], trade_ids=['opt1', 'opt2', 'delta'])\n",
+ "#plot_trade_scenarios(portf)\n",
+ "\n",
+ "#April 2017: Sell May Buy June Calendar Trade\n",
+ "option_delta = CreditIndex.from_tradeid(874)\n",
+ "option1 = BlackSwaption.from_tradeid(7, option_delta)\n",
+ "option2 = BlackSwaption.from_tradeid(8, option_delta)\n",
+ "portf = Portfolio([option1, option2, option_delta], trade_ids=['opt1', 'opt2', 'delta'])\n",
+ "#plot_trade_scenarios(portf)\n",
+ "\n",
+ "#June July 2017 Calendar Trade\n",
+ "option_delta_pf = CreditIndex.from_tradeid(874)\n",
+ "option_delta2_pf = CreditIndex.from_tradeid(879)\n",
+ "\n",
+ "option1_pf = BlackSwaption.from_tradeid(7, option_delta_pf)\n",
+ "option2_pf = BlackSwaption.from_tradeid(9, option_delta_pf)\n",
+ "option_delta_pf.notional = 50_335_169\n",
+ "\n",
+ "portf = Portfolio([option1_pf, option2_pf, option_delta_pf], trade_ids=['opt1', 'opt2', 'delta'])\n",
+ "portf.value_date = datetime.date(2017, 5, 17)\n",
+ "portf.mark()\n",
+ "#plot_trade_scenarios(portf)\n",
+ "\n",
+ "#July 2017: Buy Sept HY payer spread\n",
+ "option_delta = CreditIndex.from_tradeid(891)\n",
+ "option1 = BlackSwaption.from_tradeid(10, option_delta)\n",
+ "option2 = BlackSwaption.from_tradeid(11, option_delta)\n",
+ "portf = Portfolio([option1, option2, option_delta], trade_ids=['opt1', 'opt2', 'delta'])\n",
+ "#plot_trade_scenarios(portf)\n",
+ "\n",
+ "#March 2019: May Bull Risky\n",
+ "option_delta = CreditIndex.from_tradeid(1063)\n",
+ "option1 = BlackSwaption.from_tradeid(41, option_delta)\n",
+ "option2 = BlackSwaption.from_tradeid(40, option_delta)\n",
+ "portf = Portfolio([option1, option2, option_delta], trade_ids=['opt1', 'opt2', 'delta'])\n",
+ "results = calc_simple_scenario(portf, shock_min=-.3, shock_max=.3)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Look at steepness of volatility - 30 days, .85 vs .15 payer deltas on HY\n",
+ "days = 30\n",
+ "delta1 = .85\n",
+ "delta2 = .15\n",
+ "index = 'HY'\n",
+ "\n",
+ "sql_str = \"select b.quotedate, b.ref, b.ref_id, b.expiry, a.delta_pay, a.vol from \" \\\n",
+ " \"swaption_quotes a join swaption_ref_quotes b on a.ref_id = b.ref_id and index = %s\"\n",
+ "df = pd.read_sql_query(sql_str, dbengine('serenitasdb'), \n",
+ " index_col=['quotedate'], parse_dates={'quotedate': {'utc': True}}, params=[index])\n",
+ "df['days_expiry'] = (df.expiry - df.index.date).dt.days\n",
+ "r_1 = []\n",
+ "for i, g in df.groupby(pd.Grouper(freq='D', level='quotedate')):\n",
+ " r = []\n",
+ " for i_1, g_1 in g.groupby(['days_expiry', 'delta_pay']):\n",
+ " r.append([i_1[0], i_1[1], g_1['vol'].mean()])\n",
+ " if len(r) > 0:\n",
+ " temp = np.dstack(r)\n",
+ " f = SmoothBivariateSpline(temp[0][0], temp[0][1], temp[0][2])\n",
+ " r = (f(days, delta1) - f(days, delta2))[0][0]\n",
+ " r_1.append([i, r])\n",
+ " else:\n",
+ " pass\n",
+ "df_1 = pd.DataFrame(r_1, columns=['date', 'steepness'])\n",
+ "df_1.set_index('date').plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Set up Portfolio\n",
+ "from risk.swaptions import get_swaption_portfolio\n",
+ "from risk.tranches import get_tranche_portfolio\n",
+ "rundate = datetime.date(2019,6,21)\n",
+ "\n",
+ "portf = get_swaption_portfolio(rundate, conn)\n",
+ "\n",
+ "#index positions\n",
+ "df = pd.read_sql_query(\"SELECT * from list_cds_positions_by_strat(%s)\",\n",
+ " dawn_engine, params=(rundate,))\n",
+ "df = df[df.folder.str.contains(\"OPT\")]\n",
+ "for t in df.itertuples(index=False):\n",
+ " portf.add_trade(CreditIndex(redcode=t.security_id, maturity=t.maturity, notional=t.notional),\n",
+ " (t.folder, t.security_desc))\n",
+ "\n",
+ "portf.value_date = rundate\n",
+ "portf.mark(interp_method=\"bivariate_linear\")\n",
+ "portf.reset_pv()\n",
+ "\n",
+ "#------------------------Calc Scenarios\n",
+ "vol_surface = {}\n",
+ "for trade in portf.swaptions:\n",
+ " vs = BlackSwaptionVolSurface(trade.index.index_type, trade.index.series, \n",
+ " value_date=rundate, interp_method = \"bivariate_linear\")\n",
+ " vol_surface[(trade.index.index_type, trade.index.series)] = vs[vs.list(option_type='payer')[-1]]\n",
+ "vol_shock = [0]\n",
+ "corr_shock = [0]\n",
+ "spread_shock = np.round(np.arange(-.2, 1, .05), 3)\n",
+ "scens = run_portfolio_scenarios(portf, [pd.Timestamp(rundate)], params=['pnl', 'delta'],\n",
+ " spread_shock=spread_shock,\n",
+ " vol_shock=vol_shock,\n",
+ " corr_shock=[0],\n",
+ " vol_surface=vol_surface)\n",
+ "\n",
+ "pnl = scens.xs('pnl', axis=1, level=2)\n",
+ "pnl = pnl.xs(0, level='vol_shock')\n",
+ "\n",
+ "scenarios = (pnl.\n",
+ " reset_index(level=['date'], drop=True).\n",
+ " groupby(level=0, axis=1).sum())\n",
+ "\n",
+ "options = ['HYOPTDEL', 'HYPAYER', 'HYREC', 'IGOPTDEL', 'IGPAYER', 'IGREC']\n",
+ "scenarios['options'] = scenarios[set(scenarios.columns).intersection(options)].sum(axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Now say that it widens by X percentage, then rebalance, then do the shock again\n",
+ "rundate = datetime.date(2019,6,21)\n",
+ "x = 1.2\n",
+ "for t in portf.swaptions:\n",
+ " t.index.spread *= x\n",
+ " vs = vol_surface[(t.index.index_type, t.index.series)]\n",
+ " t.sigma = max(0.2, float(vs(t.T, math.log(t.moneyness))))\n",
+ "for t in portf.indices:\n",
+ " t.spread *= x\n",
+ "pnl = portf.pnl\n",
+ "\n",
+ "analytics.init_ontr(value_date=rundate)\n",
+ "rebal = analytics._ontr()\n",
+ "rebal.notional = portf.hy_equiv\n",
+ "rebal.direction = 'Seller'\n",
+ "\n",
+ "rebal.spread *= x\n",
+ "portf.add_trade(rebal, ('rebalance', 'HYOPTDEL'))\n",
+ "portf.reset_pv()\n",
+ "\n",
+ "swaptions_scens = portf.swaptions[0].shock(params=['pnl', 'pv'],\n",
+ " spread_shock=spread_shock,\n",
+ " vol_shock=vol_shock,\n",
+ " vol_surface=vol_surface)\n",
+ "\n",
+ "#------------------------Calc Scenarios\n",
+ "scens = run_portfolio_scenarios(portf, [pd.Timestamp(rundate)], params=['pnl', 'pv'],\n",
+ " spread_shock=spread_shock,\n",
+ " vol_shock=vol_shock,\n",
+ " corr_shock=[0],\n",
+ " vol_surface=vol_surface)\n",
+ "\n",
+ "pnl = scens.xs('pnl', axis=1, level=2)\n",
+ "pnl = pnl.xs(0, level='vol_shock')\n",
+ "\n",
+ "scenarios = (pnl.\n",
+ " reset_index(level=['date'], drop=True).\n",
+ " groupby(level=0, axis=1).sum())\n",
+ "\n",
+ "options = ['HYOPTDEL', 'HYPAYER', 'HYREC', 'IGOPTDEL', 'IGPAYER', 'IGREC', 'rebalance']\n",
+ "scenarios['options'] = scenarios[set(scenarios.columns).intersection(options)].sum(axis=1)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}